期刊文献+

用于MIMO-OFDM系统QR分解的分布式脉动阵列处理算法 被引量:4

A Distributed Systolic Array Processing Algorithm for QR-decomposition in MIMO-OFDM System
下载PDF
导出
摘要 针对多载波系统中信道矩阵QR(正交三角矩阵)分解的延时问题,该文提出适用于MIMO-OFDM系统QR分解的分布式脉动阵列处理(Distributed Systolic Array Processing,DSAP)算法。该算法包含两种处理机制,一是交织预处理,对不同子载波信道矩阵行矢量进行分组交织处理,按照延时递增规律将每列信道矩阵元素读出并输入到脉动阵列;二是分布式脉动阵列计算,通过脉动阵列边界单元和内部单元中流水线CORDIC计算和子载波同步处理实现信道矩阵QR分解分布式处理,实现不同子载波QR分解分布于脉动阵列边界单元和内部单元中CORDIC不同级。与串行脉动阵列处理(Serial Systolic Array Processing,SSAP)算法比,DSAP算法充分利用时钟周期,分解延时约为SSAP算法的8%,有效减少数据处理延时,而复杂度几乎没有增加。 To reduce the delay of Quadrature tRiangle (QR)-decomposition in the multi-carrier systems, a Distributed Systolic Array Processing (DSAP) algorithm for MIMO-OFDM system is proposed. The algorithm includes two processing mechanism: the first is the interleaved pre-processing, which groups and interleaves the row vectors of different channel matrix, and then the matrix elements are sent into the systolic array in columns according to the delay increasing pattern; the other is the signal processing of the distributed systolic array, which uses the CORDIC computation in the boundary and internal cells of systolic array and the synchronization operation, can distribute the QR-decomposition of different sub-carriers into the different stages of the pipelining operation of CORDIC in systolic array. Compared to Serial Systolic Array Processing (SSAP) algorithm, the clock periods can be put to great use in the DSAP algorithm, the delay is reduced by ninety-two percent with the same complexity, and it reduces the delay of subsequent data processing effectively.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第8期1968-1973,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60976022) 国家重大科技专项(2010ZX03005-001) 北京科技新星(392010B060)资助课题
关键词 无线通信 QR(正交三角矩阵)分解 分布式脉动阵列处理 MIMO—OFDM 低延时 Wireless communication Quadrature tRiangle (QR)-decomposition Distributed Systolic ArrayProcessing (DSAP) MIMO-OFDM Low-delay
  • 相关文献

参考文献11

  • 1Chiu P L, Huang L Z, Chai L W, et al.. A 684 Mbps 57 mWjoint QR decomposition and MIMO processor for 4×4 MIMO-OFDM systems[C]. IEEE Asian Solid State CircuitsConference(ASSCC), Jeju, Korea, Nov. 14-16, 2011:309-312. 被引量:1
  • 2Ramakrishnan V, Veerkamp T, Ascheid G, et al..Implementations of sorted-QR decomposition for MIMOreceivers: complexity, reusability and efficiency analysis[J].Journal of Signal Processing Systems, 2011, 69(3): 1-13. 被引量:1
  • 3Kim T H and Park I C. Small-area and low-energy K-BestMIMO detector using relaxed tree expansion and earlyforwarding[J]. IEEE Transactions on Circuits and Systems-I:Regular Papers, 2010, 57(10): 2753-2761. 被引量:1
  • 4Shen C A and Eltawil A M. A radius adaptive K-Bestdecoder with early termination: algorithm and VLSIarchitecture [J]. IEEE Transactions on Circuits andSystems-I: Regular Papers, 2010, 57(9): 2476-2486. 被引量:1
  • 5Huang Z Y and Tsai P Y. Efficient implementation of QRdecomposition for gigabit MIMO-OFDM systems[J]. IEEETransactions on Circuits and Systems-I: Regular Papers,2011, 58(10): 2531-2542. 被引量:1
  • 6Ma L, Dickson K, and McAllister J. QR decomposition-basedmatrix inversion for high performance embedded MIMOreceivers[J]. IEEE Transactions on Signal Processing, 2011,59(4): 1858-1867. 被引量:1
  • 7Haene S, Perels D, and Burg A. A real-time 4-streamMIMO-OFDM transceiver: system design, FPGAimplementation, and characterization[J]. IEEE Journal onSelected Areas in Communications, 2008, 26(6): 877-889. 被引量:1
  • 8Chang R, Lin C, Lin K, et al.. Iterative QR decompositionarchitecture using the modified Gram-Schmidt algorithm forMIMO systems[J]. IEEE Transactions on Circuits andSystems-I: Regular Papers, 2010, 57(5): 1095-1102. 被引量:1
  • 9Chen D D and Sima M. Fixed-point CORDIC-based QRdecomposition by Givens rotations on FPGA[C].International Conference on Reconfigurable Computing andFPGAs (ReConFig), Cancun, Mexico, 2011: 327-332. 被引量:1
  • 10Hwang Y T and Chen W D. Design and implementation of ahigh-throughput fully parallel complex-valued QRfactorisation chips[J]. IET Circuits Devices Systems, 2011,5(5): 424-432. 被引量:1

同被引文献32

  • 1黑志坚.一种矩阵求逆方法[J].哈尔滨工业大学学报,2004,36(10):1351-1353. 被引量:13
  • 2孙泉,赵明,张秀君.基于脉动阵列的LU算法矩阵求逆VLSI结构[J].微电子学与计算机,2007,24(3):138-141. 被引量:2
  • 3A Farina,L Timmoneri.Parallel Algorithms and Processing Architectures for Space Time Adaptive Processing[C].Proc.of CIE International Conf,1996:770-774. 被引量:1
  • 4I NDunn,G L Meyer.Parallel QR Factorization for Hybrid Message Passing/shared Memory Operation[J].Journal of the Franklin Institute,2001,338 (5):601-613. 被引量:1
  • 5V Hernandez,J E Roman,A Tomas.A Parallel Variant of the Gram Schmidt Process with Rorthogonalization[C],Proc.of Int'l Conf.on Parallel Computing:Current & Future Issues of HighEnd Computing,2005:221-228. 被引量:1
  • 6B K David and W H Wen.Programming Massively Parallel Processors:A Hands-on Approach[M],San Mateo:Morgan Kaufmann,2010. 被引量:1
  • 7Kerr,D Campbell and M Richards.QR decomposition on GPUs[C].Workshop on General Purpose Processing on Graphics Processing Units,Washington,D.C.,2009,383:71-78. 被引量:1
  • 8H Ryan,M Theresa,K Jeremy and L James.The HPEC Challenge Benchmark Suite[C].In Proceedings of the Ninth Annual HighPerformance Embedded Computing Workshop,Lexington,MA,September 2005. 被引量:1
  • 9KIM T H, PARK I C. Small-area and low-energy K-best MIMO detector using relaxed tree expansion and early forwarding[J].IEEE Transactions on Circuits and Systems-I: Regular Papers, 2010, 57(10): 2753-2761. 被引量:1
  • 10SHEN C A, ELTAWIL A M. A radius adaptive K-best decoder with early termination: Algorithm and VLSI architecture[J]. IEEE Transactions on Circuits and Systems-I Regular Papers, 2010, 57(9): 2476-2486. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部