期刊文献+

基于多分辨率聚类的云制造任务分配 被引量:9

Task allocation in cloud manufacturing based on multi-resolution clustering
下载PDF
导出
摘要 针对云制造环境下用户需求复杂多变和制造资源能力分散异构的特点,为实现制造资源的动态共享与智能分配,提出一种能够在云制造环境下迅速得出需求能力高效匹配的多分辨率聚类任务分配方案。根据任务目标特点选择适应的参数建立反映需求能力匹配程度的聚类距离函数,并以此距离为聚类依据展开多分辨率聚类,随聚类过程将任务分解并分配到相应的资源能力提供者,得出云制造系统中需求能力的多分辨率层次结构,为解决云制造环境下资源的高效配置问题、实现云制造系统中用户需求和资源能力的动态匹配提供了可行结构。通过实例对以上任务分配方案过程进行了详述,并论证了该算法可为充分利用云制造系统中零碎制造能力提供有效途径。 Aiming at the characteristics of users' complicated variable requirements and manufacturing resources' dispersed heterogeneous in cloud manufacturing environment, a multi-resolution clustering task allocation method which could get efficient match of demand ability, was proposed to achieve dynamic sharing and intelligent distribution of manufacturing resources. According to characteristic of task goal, appropriate parameters were selected to build function of clustering distance, and the multi-resolution clustering was developed based on this distance. Tasks were decomposed and distributed to corresponding resources along with the clustering process, and a hierarchical structure of demand ability in cloud manufacturing system was obtained. It was a feasible structure to solve the problem of resource efficient allocation and to realize the dynamic matching between requirements and resource ability in cloud manufacturing system. Through examples, the process of proposed allocation scheme was illustrated, and it was proved to be an effective way to make full use of broken manufacturing capacity in cloud manufacturing.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2012年第7期1461-1468,共8页 Computer Integrated Manufacturing Systems
基金 国家863计划重大资助项目(2008AA04A107) 国家自然科学基金重大国际合作资助项目(71020107027) 四川大学985工程资助项目 九寨沟风景名胜区管理局博士后科研工作站资助项目~~
关键词 云制造 任务分配 多分辨率聚类 资源匹配程度 cloud manufacturing task allocation multi-resolution clustering resource matching degree
  • 相关文献

参考文献22

二级参考文献153

共引文献2418

同被引文献69

  • 1侯亮,陈峰,温志嘉.跨企业产品协同开发中的设计任务分解与分配[J].浙江大学学报(工学版),2007,41(12):1976-1981. 被引量:23
  • 2JIANG W, MA J, ZHANG X, et al. Research on cloud man- ufacturing resource integrating service modeling based on cloud-agent[C]//Proceedings of the 3rd International Confer- enee on Software Engineering and Service Science. Washing- ton, D, C. , USAIEEE Press,2012.395-398. 被引量:1
  • 3TAIL J, HU R F, CHEN C W, et al. Manufacturing resour- ces and demand intelligent matching in cloud manufacturing environment[C]//Proceedings of the 2nd International Confer- ence on Energy, Environment and Sustainable Development. Washington, D.C., USA.IEEE,2012:2101-2104. 被引量:1
  • 4LARTIGAU J, NIE L S, XU X F, et al. Scheduling method- ology for production services in cloud manufacturing[C]//Pro- ceedings of International Joint Conference on Service Sciences. Washington, D. C. , USA: IEEE Computer Society, 2012: 34-39. 被引量:1
  • 5LAILI Y J, ZHANG L, TAO F. Energy adaptive immune ge- netic algorithm for collaborative design task scheduling in cloud manufacturing system[C]//Proceedings of IEEE International Conference on Industrial Engineering and Engineering Manage- ment. Washington, D. C. , USA.IEEE Press,2011:1912-1916. 被引量:1
  • 6LI H F, JIANG R, GE S Y. Researches on manufacturing cloud service composition and optimization approach support- ing for service statistic eorrelation[C]//Proceedings of the 26th Chinese Control and Decision Conference. Washington, D. C. ,USA:IEEE,2014:4149-4154. 被引量:1
  • 7GAREY M R, JOHNSON D S, SETHI, et al. The complex ity of flowshop and jobshop scheduling[J]. Mathematics of Operations Research, 1976,1(2) : 117-129. 被引量:1
  • 8LAILI Y J, TAO F, ZHANG L, et al. The optimal alloca- tion model of computing resources in cloud manufacturing system[C]//Proceedings of the 7th International Conference on Natural Computation. Washington, D. C. , USA: IEEE Press,2011 .2322-2326. 被引量:1
  • 9刘金山,廖文和,郭宇.基于双链遗传算法的网络化制造资源优化配置[J].机械工程学报,2008,44(2):189-195. 被引量:17
  • 10陈洪辉,赵亮,芮红,罗雪山.作战任务和资源间的匹配模型及求解算法研究[J].系统工程与电子技术,2008,30(9):1712-1716. 被引量:19

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部