期刊文献+

两平面二次曲线不变量的定义、几何解释及计算方法 被引量:1

Geometric Interpretation and Algorithm of the Invariants of A pair of Coplanar Conics
下载PDF
导出
摘要 从实际计算的角度出发,研究了两平面二次曲线射影不变量,并对其进行了相应的几何解释,提出了相应的计算方法。首先从两二次型的不变量推导出两平面二次曲线的射影不变量,接着利用两平面二次曲线的共自极三角形给出了两平面二次曲线不变量的几何解释及计算方法。在此基础上,通过举例分析和实验验证,证明文中所给公式的正确性。 The object recognition based on the invariants is the most active research area in the computer vision. The conventional studies about invariants are that these invariants are derived for planar objects using points and lines from images. Nowadays, more and more interest comes from 3 D reconstruction based on the invariants of conics. The projective invariants of a pair of coplanar conics are studied from the perspective of computational proces- ses and the geometrically interpreted is proposed in this paper. The projective invariants of a pair of eoplanar conics are first defined from invariants of a pair of quadratic forms. Then the invariants are geometrically interpreted by using the common self-polar triangle of the two conics, and the algorithm is proposed in this paper. The result of example shows that this formula in this paper is correct on the basis of present studies.
作者 张政武
出处 《机械科学与技术》 CSCD 北大核心 2012年第8期1354-1358,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 陕西省教育厅科研计划项目(12JK0687)资助
关键词 计算机视觉 平面二次曲线 不变量 几何解释 computer vision coplanar conics invariant geometric interpretation
  • 相关文献

参考文献13

二级参考文献30

  • 1Rajashekhar S C, Namboodiri V P. Image retrieval based on projective invarianee[ A]. 2004 International Conference on Image Processing (ICIP) [ C], 2004:405-408 被引量:1
  • 2Lillholm M, Nielsen M. Feature-based image analysis [ J ]. International Journal of Computer Vision, 2003,52 ( 2/3 ) : 73-95 被引量:1
  • 3Pedersen K S, Nielsen. The Hausdorff dimension and scale-space normalization of natural images[J]. JVCIR, 2000,11 (2) :266-277 被引量:1
  • 4Nunzlati W, et al. An Invariant Representation for Matching Trajectories Across Uncalibrated Video Streams [ M ]. Springer-Verlag Berlin Heidelberg, 2005:318-327 被引量:1
  • 5Mundy J L, et al. Geometric Interpretation of Joint Conic Invariants[M]. MIT Press, Cambridge, MA. USA, 1992 被引量:1
  • 6Kim H, Kim J. Region-based shape descriptor invariant to rotation scale and translation[J]. Signal Processing: Image Communication, 2000,16(1-2) :87 -93 被引量:1
  • 7陈昕,向健勇,杨宜禾.不变性理论用于空中目标的识别[J].红外与毫米波学报,1997,16(1):39-44. 被引量:16
  • 8张建初,高等代数与空间解析几何,1993年 被引量:1
  • 9龙泽斌,几何变换,1984年 被引量:1
  • 10梅向明,高等几何,1983年 被引量:1

共引文献27

同被引文献9

  • 1程志远,马彩文,高满屯,李艳,唐自力.基于序列图像中二次曲线对应的纯旋转运动参数估计算法[J].工程图学学报,2006,27(1):98-104. 被引量:5
  • 2袁立行,郑南宁,王爱群.一种新的空间透视不变量计算方法[J].西安交通大学学报,1997,31(1):82-87. 被引量:2
  • 3Bayro-Corrochano E, Banarer V. A geometric approach for the theory and applications of 3D projective invariants [J]. Journal of Mathematical Imaging and Vision, 2002, 16: 131-154. 被引量:1
  • 4Unel M, Soldea O, Ozgur E, et al. 3D object recognition using invariants of 2D projection curves [J]. Pattern Anal Applic, 2010, 13: 451-468. 被引量:1
  • 5Raviv D M, Bronstein A M, Bronstein M, et al. Equi-affine invariant geometry for shape analysis [J]. Journal of Mathematical Imaging and Vision, 2014, 50: 144-163. 被引量:1
  • 6Long Quan. Invariants of six points and projective reconstruction from three uncalibrated images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(1): 34-46. 被引量:1
  • 7Rajashekhar S C, Namboodiri V E Image retrieval based on projective invariance [C]//2004 International Conference on Image Processing (ICIP). Singapore, 2004, 10: 405-408. 被引量:1
  • 8Jiang Guang, Tsui H, Long Quan, et al. Geometry of single axis motions using conic fitting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1343-1348. 被引量:1
  • 9刘方,王润生.利用消失点列的射影不变量描述平面直线关系[J].电子学报,2001,29(9):1188-1191. 被引量:9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部