期刊文献+

低功耗片上网络映射的遗传及蚂蚁融合算法 被引量:2

Fusion Strategy with Genetic and Ant Algorithms for Low-Power NoC Mapping
下载PDF
导出
摘要 针对带宽和时延约束下的低功耗片上网络映射问题,提出了基于遗传和蚂蚁算法融合的映射算法.该算法利用遗传算法的快速搜索能力,获得若干优化解,并按照这些优化解的最优顺序给蚂蚁路径赋初值,以初始化蚂蚁算法的信息素分布.然后,借助具有交叉和变异操作的蚂蚁算法,充分利用蚂蚁算法的正反馈特性,搜索低功耗映射问题的更优解.该算法具有收敛速度快、优化效果好的特点,可用于求解大规模片上网络映射问题.实验结果表明:当系统规模扩大时,该算法在搜索时间方面明显优于遗传类算法和蚂蚁类算法,如系统规模为64处理单元时,搜索速度提高率最高可达220.3%,在较快收敛的同时,还保持了较好的优化效果,与蚂蚁类算法的差别可保持在9.1%以内. To solve low-power mapping with bandwidth and latency constraints of network-on- chip (NoC), a fusion mapping with genetic and ant algorithms is proposed. Several optimal solutions are obtained by quick searching of genetic algorithm, then the initial values of ant paths are assigned according to the order of these optimal solutions to initialize the pheromone distribution of ant algorithm. Resorting the ant algorithm with crossover and mutation operation, and taking full advantage of the positive feedback features of the ant algorithm, the exact solution of the low-power mapping is searched out. This fusion strategy can be used to solve the large- scale NoC mappings with good optimization precision and convergence. The experimental results indicate that this strategy obviously outperforms genetic and ant algorithms for larger scale systems, the improvement of search rate can be heightened up to 220.3% for system of 64 processing elements, and the optimization difference gets less than 9.1% compared with ant algo- rithm.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第8期65-70,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60736012 60773223 61003037 61173047) 国家"863计划"资助项目(2009AA01Z110) 西北工业大学基础研究基金资助项目
关键词 映射 遗传算法 蚂蚁算法 低功耗 片上网络 mapping genetic algorithm ant algorithm low-power network-on-chip
  • 相关文献

参考文献12

二级参考文献86

  • 1周干民,尹勇生,胡永华,高明伦.基于蚁群优化算法的NoC映射[J].计算机工程与应用,2005,41(18):7-10. 被引量:14
  • 2高明伦,杜高明.NoC:下一代集成电路主流设计技术[J].微电子学,2006,36(4):461-466. 被引量:31
  • 3吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:47
  • 4张磊,李华伟,李晓维.用于片上网络的容错通信算法[J].计算机辅助设计与图形学学报,2007,19(4):508-514. 被引量:18
  • 5Dally W J, Towles B. Route Packets, Not Wires: On-chip Interconnection Networks [ C] //Proceedings of Design Automation Conference (DAC). Las Vegas: ACM, 2001: 683-689. 被引量:1
  • 6Hu J, Marcttleseu R. Energy-aware Mapping for Tile-based NoC Architectures under Performance Constraints [ C]//Proceedings of Asia South Pacific Design Automation Conference. Kitakyushu: ACM, 2003: 233-239. 被引量:1
  • 7Bhardwaj K, Jena R K. Energy and Bandwidth Aware Mapping of IPs onto Regular NoC Architectures Using Multi-Objective Genetic Algorithms [ C]//Proceedings of the 11th International Conference on System-on-chip. Tampere: IEEE, 2009: 27-31. 被引量:1
  • 8Lei T, Kumar S. A Two-step Genetic Algorithm for Mapping Task Graphs to a Network on Chip Architecture [ C]//Proceedings of the Euromicro Symposium on Digita/System Design. Belek Antalya: IEEE Computer Society, 2003: 180-187. 被引量:1
  • 9Moein-Darbari F, Khademzade A, Gharooni-Fard G. CGMAP: a New Approach to Network-on-Chip Mapping Problem [ J]. IEICE Electronics Express, 2009, 6(1): 27-34. 被引量:1
  • 10Shi H. An Improved Hybrid Genetic Algorithms Using Simulated Annealing [ C]//2009 Second International Symposium on Electronic Commerce and Security. Nanehang: IEEE Computer Society, 2009: 462-465. 被引量:1

共引文献349

同被引文献16

  • 1李英海,周建中,杨俊杰,刘力.一种基于阈值选择策略的改进混合蛙跳算法[J].计算机工程与应用,2007,43(35):19-21. 被引量:80
  • 2Benini L, De Micheli G.Networks on Chips: a New SoC Paradigm[J]. Computer, 2002, 35(1): 70-78. 被引量:1
  • 3Eusuff M M, Lansey K E. Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm[J]. Journal of Water Resources Planning and Management, 2003, 129(3): 210-225. 被引量:1
  • 4Chung G, Lansey K. Application of the Shuffled Frog Leaping Algorithm for the Optimization of a General Large-scale Water Supply System[J]. Water Resources Management, 2009, 23(4): 797-823. 被引量:1
  • 5Luo Xuehui, Yang Ye, Li Xia. Solving TSP with Shuffled Frog-leaping Algorithm[C]//8th International Conference on Intelligent Systems Design and Applications. Piscataway: IEEE, 2008: 228-232. 被引量:1
  • 6Bhaduri A, Bhaduri A. Color Image Segmentation Using Clonal Selection-based Shuffled Frog Leaping Algorithm[C]//ARTCom 2009-International Conference on Advances in Recent Technologies in Communication and Computing. Piscataway: IEEE, 2009: 517-520. 被引量:1
  • 7Rahimi-Vahed A, Dangchi M, Rafiei H, et al. A Novel Hybrid Multi-objective Shuffled Frog-leaping Algorithm for a Bi-criteria Permutation Flow Shop Scheduling Problem[J]. International Journal of Advanced Manufacturing Technology, 2009, 41(11-12): 1227-1239. 被引量:1
  • 8常政威,谢晓娜,桑楠,熊光泽.片上网络映射问题的改进禁忌搜索算法[J].计算机辅助设计与图形学学报,2008,20(2):155-160. 被引量:16
  • 9杨盛光,李丽,高明伦,张宇昂.面向能耗和延时的NoC映射方法[J].电子学报,2008,36(5):937-942. 被引量:46
  • 10罗雪晖,杨烨,李霞.改进混合蛙跳算法求解旅行商问题[J].通信学报,2009,30(7):130-135. 被引量:93

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部