期刊文献+

多相Chan-Vese模型的直接对偶方法 被引量:1

Direct dual method of Chan-Vese model for multiphase segmentation
原文传递
导出
摘要 多相图像分割的变分模型采用水平集函数定义不同区域的特征函数,其极值问题需要迭代求解一系列动态演化方程,计算效率低。较快的方法是对离散的二值标记函数凸松弛后设计对偶方法或Split Bregman方法,并结合阈值化技术得到分割结果。提出一种无需凸松弛和阈值化的快速分割方法—直接对偶方法(DDM)。DDM利用二值标记函数的二值特性,并根据KKT条件得到原变量的二值解析解和对偶变量的简单迭代格式。该方法首先应用到两相Chan-Vese模型,然后拓展到多相Chan-Vese模型。实验结果表明,DDM比梯度降方法、对偶方法和Split Bregman方法分割效果好、计算效率高。 The multiphase image segmentation is modeled as a minimization problem with characteristic functions defined by level set functions, which leads to solutions of some gradient descent equations with low computation efficiency. This is improved via the dual method or Split-Bregman method using binary labeling functions and convex relaxation, thresholding techniques. In this paper, we propose a fast direct dual method (DDM) without convex relaxation and thresholding tech- niques. First, we design the DDM for the two-phase Chan-Vese model, which results in a binary solution of the primal vari- able in analytical form and a simple iterative formulation of the dual variable by using KKT (Karush-Kuhn-Tueker) condi-tions. Then, it is extended to the Chan-Vese model for multiphase image segmentation. The experimental results demon-strate that the proposed method has a better performance, and is more efficient than the gradient descent method, the dual method, and the Split-Bregman method.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第8期979-986,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61170106) 山东省博士后创新基金项目(201003046) 山东省自然科学基金项目(ZR2010FQ030)
关键词 多相图像分割 Chan—Vese模型 二值标记函数 凸松弛 对偶方法 muhiphase image segmentation Chan-Vese model binary labeling function convex relaxation dual method
  • 相关文献

参考文献17

  • 1Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [ J]. Communications on Pure and Applied Mathematics, 1989, 42 (5): 5774585. 被引量:1
  • 2Chan T F, Vese L A. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001, 10 (2) :266-277. 被引量:1
  • 3Zhao H K, Chan T F, Merriman B, et al. A variational level set approach to muhiphase motion [ J ]. Journal of Computational Physics, 1996, 127 ( 1 ) : 179-195. 被引量:1
  • 4Vese L A, Chan T F. A muhiphase level set framework for image segmentation using the mumford and shah model [ J ]. International Journal of Computer Vision, 2002, 50 (3) :271-293. 被引量:1
  • 5Bresson X, Esedoglu S, Vandergheynst P, et al. Fast global minimization of the active contour/snake model [ J ]. Journal of Mathematical Imaging and Vision, 2007, 28 ( 2 ) : 151-167. 被引量:1
  • 6Goldstein T, Bresson X, Osher S. Geometric applications of the Split Bregman method: segmentation and surface reconstruction [ J]. Journal of Scientific Computing, 2010, 45 ( 1 ) :272-293. 被引量:1
  • 7Chambolle A. An algorithm for total variation minimization and applications [ J ]. Journal of Mathematical Imaging and Vision, 2004, 20( 1 ) :89-97. 被引量:1
  • 8Goldstein T, Osher S. The Split Bregman method for L1 regularized problems [ J]. SIAM Journal on Imaging Sciences, 2009, 2(2) :323-343. 被引量:1
  • 9Li F, Shen C, Li C. Muhiphase soft segmentation with total variation and H1 regularization [ J]. Journal of Mathematical Imaging and Vision, 2010, 37(2):98-111. 被引量:1
  • 10王琦,潘振宽,魏伟波.多相图像分割的Split-Bregman方法及对偶方法[J].计算机辅助设计与图形学学报,2010,22(9):1561-1569. 被引量:7

二级参考文献18

  • 1Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79. 被引量:1
  • 2Chan T F,Vese L A.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277. 被引量:1
  • 3Paragios N.Geodesic active regions and level set methods:contributions and applications in artificial vision[D].Nice:University of Nice Sophia Antipolis,2000. 被引量:1
  • 4Samson C,Blanc-Féraud L,Aubert G,et al.A level set model for image classification[J].International Journal of Computer Vision,2000,40(3):187-197. 被引量:1
  • 5Zhao H K,Chan T,Merriman B,et al.A variational level set approach to multiphase motion[J].Journal of Computational Physics,1996,127(1):179-195. 被引量:1
  • 6Vese L A,Chan T F.A multiphase level set framework for image segmentation using the Mumford and Shah model[J].International Journal of Computer Vision,2002,50(3):271-293. 被引量:1
  • 7Lie J,Lysaker M,Tai X C.A binary level set model and some applications to Mumford-Shah image segmentation[J].IEEE Transactions on Image Processing,2006,15(5):1171-1181. 被引量:1
  • 8Chung G,Vese L A.Energy minimization based segmentation and denoising using a multilayer level set approach[M] //Lecture Notes in Computer Science.Heidelberg:Springer,2005,3757:439-455. 被引量:1
  • 9Lie J,Lysaker M,Tai X C.A variant of the level set method and applications to image segmentation[R].Los Angeles:University of California at Los Angeles,2003. 被引量:1
  • 10Bresson X,Esedoglu S,Vandergheynst P,et al.Fast global minimization of the active Contour/Snake model[J].Journal of Mathematical Imaging and Vision,2007,28(2):151-167. 被引量:1

共引文献6

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部