期刊文献+

自适应多分辨图像跟踪算法

Adaptive Multi-Resolutional Image Tracking Algorithm
下载PDF
导出
摘要 针对实时图像跟踪中目标尺度不断变化的问题,提出了一种新的最大后验概率指标下尺度自适应的多分辨图像跟踪算法.首先证明了后验概率指标的像素级计算特性,在该特性的基础上提出了一种最大后验跟踪算法.由于后验概率指标不仅可以按照特征进行计算,还可以按照像素进行计算,从而可以方便地实现不同尺度上的像素相似度贡献值的计算和比较,据此提出了一种新的目标尺寸自适应算法.此外,当目标尺寸较大时,可以采用不同的分辨率来计算候选匹配区域的匹配概率值,大大降低计算量,从而保证实时跟踪的时间需求.综合上述特点,给出了最大后验概率指标下目标尺寸自适应的多分辨图像跟踪算法.多组视频跟踪实验结果表明了本算法的有效性. In order to solve the target scaling problem in visual tracking, a new adaptive multi- resolutional image tracking algorithm employing posteriori probability similarity measure is developed. The pixel-wise computational property of the posteriori probability measure is proved firstly, based on which, a maximum posteriori probability tracking algorithm is developed. The posteriori probability measure can be computed both by feature and by pixel, which enables the convenient computation of each pixel's contribution to the similarity value. Based on this property, a new adaptive scaling method is developed. On the other hand, when the size of the tracked target becomes large, multi-resolutional skill can be employed to reduce the computation burden, which is also derived from the computation property of the employed measure. Finally, a new adaptive multi- resolutional image tracking algorithm based on posteriori probability similarity measure is constructed. Experimental results demonstrate the effectiveness of the new algorithm.
作者 吕娜 冯祖仁
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第8期1708-1714,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61105034 60905044) 高等学校博士学科点专项科研基金项目(20100201120040) 中国博士后科学基金项目(20110491662)
关键词 图像跟踪 尺度自适应 多分辨 后验概率指标 相似度指标 image tracking adaptive scaling multi-resolution posteriori probability measure similarity measure
  • 相关文献

参考文献19

  • 1Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [-J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. 被引量:1
  • 2Comanieiu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift I-C] ]/Proc of IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 20001 142-149. 被引量:1
  • 3Liu T L, Chen H T. Real-time tracking using trust-region methods ['J']. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(3): 397-402. 被引量:1
  • 4Liu T L, Chen H T. Trust-region methods for real-time tracking [-C'] //Proc of the 8th IEEE Int Conf on Computer Vision. Los Alamitos. IEEE Computer Soeiety, 2001: 717- 722. 被引量:1
  • 5Horn B K, Schunk B G. Determining optical flow I-J]. Artificial Intelligence, 1981, 17(1/2/3): 185-203. 被引量:1
  • 6Smith S M, Brady J M. ASSET-2: Real-time motion segmentation and shape tracking I-J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(8) 814-820. 被引量:1
  • 7Isard M, Blake A. Contour tracking by stochastic propagation of conditional density [-C //Proc of the 4th European Conf on Computer Vision. Berlin: Springer, 1996 343-356. 被引量:1
  • 8Djouadi A, Snorrason O, Garber F. The quality of training- sample estimates of the Bhattacharyya coefficient [-J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(1): 92-97. 被引量:1
  • 9Kailath T. The divergence and Bhattacharyya distance in signal selection l-J3. IEEE Trans on Communication Technology, 1967, 15(1): 52-60. 被引量:1
  • 10Lin Jianhua. Divergence measures based on the Shannon entropy I-J. IEEE Trans on Information Theory, 1991, 37 (1), 145-151. 被引量:1

二级参考文献25

  • 1[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40. 被引量:1
  • 2[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799. 被引量:1
  • 3[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149. 被引量:1
  • 4[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635. 被引量:1
  • 5[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219. 被引量:1
  • 6[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575. 被引量:1
  • 7[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240. 被引量:1
  • 8[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857. 被引量:1
  • 9[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245. 被引量:1
  • 10[10]Mohammad GA. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. on Image Processing, 2001,10(4):626-533. 被引量:1

共引文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部