期刊文献+

一种基于学习的高维数据c-近似最近邻查询算法 被引量:18

c-Approximate Nearest Neighbor Query Algorithm Based on Learning for High-Dimensional Data
下载PDF
导出
摘要 针对高维数据近似最近邻查询,在过滤-验证框架下提出了一种基于学习的数据相关的c-近似最近邻查询算法.证明了数据经过随机投影之后,满足语义哈希技术所需的熵最大化准则.把经过随机投影的二进制数据作为数据的类标号,训练一组分类器用来预测查询的类标号.在此基础上计算查询与数据集中数据对象的海明距离.最后,在过滤后的候选数据集上计算查询的最近邻.与现有方法相比,该方法对空间需求更小,编码长度更短,效率更高.模拟数据集和真实数据集上的实验结果表明,该方法不仅能够提高查询效率,而且方便调控在查询质量和查询处理时间方面的平衡问题. Under the filter-and-refine framework and based on the learning techniques, a data-aware method for c-approximate nearest neighbor query for high-dimensional data is proposed in this paper. The study claims that data after random projection satisfies the entropy-maximizing criterion which is needed by the semantic hashing. The binary codes after random projection are treated as the labels, and a group of classifiers are trained, which are used for predicting the binary code for the query. The data objects are selected who's Hamming distances between the query satisfying the threshold as the candidates. The real distances are evaluated on the candidate subset and the smallest one is returned. Experimental results on the synthetic datasets and the real datasets show that this method outperforms the existing work with shorter binary code, in addition, the performance and the result quality can be easily tuned.
出处 《软件学报》 EI CSCD 北大核心 2012年第8期2018-2031,共14页 Journal of Software
基金 国家自然科学基金(60925008 60903014) 国家重点基础研究发展计划(973)(2010CB328106) "核心电子器件 高端通用芯片及基础软件产品"国家科技重大专项(2010ZX01042-002-003-004)
关键词 随机投影 c-近似最近邻查询 支持向量机分类器 高维数据 熵最大化准则 位置敏感哈希 random projection c-approximate nearest neighbor query SVM classifier high-dimensional data entropy maximizing criterion locality sensitive hashing
  • 相关文献

参考文献17

  • 1Min K, Yang L, Wright J, Wu L, Hua X, Ma Y. Compact projection: Simple and efficient near neighbor search with practical memory requirements. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Francisco: IEEE Computer Society, 2010. 3477-3484. 被引量:1
  • 2Indyk P, Motwani R. Approximate nearest neighbors: Towards removing the curse of dimensionality. In: Proc. of the 13th Annual ACM Symp. on the Theory of Computing. Dallas: Association for Computing Machinery, 1998. 604-613. [doi: 10.1145/276698. 276876]. 被引量:1
  • 3Baluja S, Covell M. Learning to hash: Forgiving hash functions and applications. Data Mining and Knowledge Discovery, 2008, 17(3):402-430. [doi: 10.1007/s10618-008-0096-z]. 被引量:1
  • 4Weiss Y, Torralba A, Fergus R. Spectral hashing. In: Koller D, Schuurmans D, Bengio Y, Bottou L, eds. In: Koller D, Schuurmans D, Bengio Y, Bottou L, eds. Proc. of the Conf. on Neural Information Processing Systems (NIPS 2008). Vancouver: Curran Associates Inc., 2009. 1753-1760. 被引量:1
  • 5Zhang D, Wang J, Cai D, Lu J. Self-Taught hashing for fast similarity search. In: Crestani F, Marchand-Maillet S, Chen HH, Efthimiadis EN, Savoy J, eds. Proc. of the 33rd lnt'l ACM S1GIR Conf. on Research and Development in Information Retrieval (SIGIR 2010). Geneva: Association for Computing Machinery, 2010. 18-25. 被引量:1
  • 6Guttman A. R-Trees: A dynamic index structure for spatial searching. In: Yormark B, ed. Proc. of the Annual Meeting ACM Special Interest Group on Management of Data (SIGMOD'84). Boston: Association for Computing Machinery, 1984. 47-57. [doi: 10.1145/971697.602266]. 被引量:1
  • 7Bentley J. Multidimensional binary search trees used for associative searching. Communications of the ACM, 1975,18(9):509-517. [doi: 10.1145/361002.361007]. 被引量:1
  • 8Weber R, Schek H, Blott S. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Gupta A, Shmueli O, Widom J, eds. Proe. of the lnt'l Conf. on Very Large Data Bases. New York: Morgan Kaufmann Publishers, 1998. 194-205. 被引量:1
  • 9Broder AZ. On the resemblance and containment of documents. In: Proc. of the '97 lnt'l Conf. on Compression and Complexity of Sequences. Positano: IEEE, 1997.21-29. 被引量:1
  • 10Datar M, lmmorlica N, Indyk P, Mirrokni V. Locality-Sensitive hashing scheme based on p-stable distributions. In: Snoeyink J, Boissonnat JD, eds. Proc. of the 20th ACM Syrup. on Computational Geometry. Brooklyn: Association for Computing Machinery, 2004.253-262. [doi: 10.1145/997817.997857]. 被引量:1

同被引文献116

  • 1张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 2卢炎生,何亚军,潘鹏.EINN最近邻居查询索引遍历算法改进[J].计算机工程与科学,2005,27(7):62-64. 被引量:2
  • 3李松,张丽平,孙冬璞.空间关系查询与分析[M].哈尔滨:哈尔滨工业大学出版社,2011. 被引量:5
  • 4保丽霞,杨兆升,胡健萌,杨晓光.交通流诱导与控制协同的双目标优化模型及准最优求解算法[J].吉林大学学报(工学版),2007,37(2):319-324. 被引量:8
  • 5Song Zhexuan,Roussopoulos N.K Nearest Neighbor Search for Moving Query Point[C]//Proc.of the 7th International Symposium on Advances in Spatial and Temporal Databases.Berlin,Germany:Springer-Verlag,2001:79-96. 被引量:1
  • 6Mouratidis K,Yiu M L,Papadias D.Continuous Nearest Neighbor Monitoring in Road Networks[C]//Proc.of VLDB.Seoul,Korea:[s.n.],2006. 被引量:1
  • 7Hu Ling,Jing Yinan,Ku W S,et al.Enforcing k Nearest Neighbor Query Integrity on Road Networks[C]//Proc.of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.Redondo Beach,USA:ACM Press:346-349. 被引量:1
  • 8Elmongui H G,Mokbel M F,Aref W G.Continuous Aggregate Nearest Neighbor Queries[J].Geo Informatica,2013,17 (1):63-95. 被引量:1
  • 9Cheng R,Chen J,Mokbel M F.Probabilistic Verifiers:Evalutaing Constrained Nearest-neighbor Queries over Uncertain Data[C]//Proc.of International Conference on Data Engineering.Chicago,USA:[s.n.]:2008:973-982. 被引量:1
  • 10Nutanong S,Tanin E,Zhang Rui.Incremental Evaluation of Visible Nearest Neighbor Queries[J].IEEE Transactions on Knowledge Engineering,2010,22 (7):665-681. 被引量:1

引证文献18

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部