期刊文献+

基于启发式动态规划的固体氧化物燃料电池优化控制研究 被引量:3

Study on Optimization Control of Solid Oxide Fuel Cell Via Heuristic Dynamic Programming
下载PDF
导出
摘要 固体氧化物燃料电池(SOFC)系统是一个非线性系统,现存的建模方法和优化控制算法很难对其进行精确的建模及优化控制;针对此问题,采用基于数据的建模方法,对固体氧化物燃料电池系统进行BP神经网络建模,然后在此基础上,首次采用启发式动态规划(HDP)算法对固体氧化物燃料电池系统中的各种气体分压、输出电压以及温度进行优化控制;Matlab仿真结果表明,基于BP神经网络的HDP优化算法具有收敛速度快、鲁棒性强、控制精度高等优点,并使固体氧化物燃料电池系统在负载变化时很快稳定输出电压,实现了优化控制,减少能耗。 Abstract.. Solid oxide fuel cell (SOFC) system is a nonlinear system. It is hard to build accurate mathematical model and achieve optimal control for it. To This Question, the idea is building a BP neural network model of solid oxide fuel cell system based on the data of the model- ing method, then based on this, performing firstly the optimal control to the solid oxide fuel cell system of all kinds of gas pressure, output voltage and temperature by the heuristic dynamic programming (HDP) algorithm. The result of Matlab simulation shows that the optimiza- tion algorithm of the HDP based on the BP neural network implement the optimal control of the solid oxide fuel cell system with strong ro- bustness, fast convergence Speed and high control precision, and make solid oxide fuel cell system quickly stable output voltage when the load is changing, realize the optimal control, reduce energy consumption.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第7期1830-1833,共4页 Computer Measurement &Control
基金 国家自然科学基金项目(60964002) 广西教育厅科研项目(200911MS11)
关键词 固体氧化物燃料电池(SOFC) BP神经网络 HDP算法 优化控制 solid oxide fuel cell BP neural network HDP optimal control
  • 相关文献

参考文献8

  • 1吴小娟,朱新坚,曹广益,屠恒勇.基于神经网络的固体氧化物燃料电池电堆建模[J].系统仿真学报,2008,20(4):1068-1071. 被引量:9
  • 2霍海波,朱新坚,曹广益.SOFC建模与控制策略的研究现状与发展[J].电源技术,2007,31(10):833-836. 被引量:10
  • 3李果,张培昌,余达太,毋茂盛.电动车燃料电池控制系统[J].控制理论与应用,2008,25(2):289-293. 被引量:16
  • 4Jurado. F. Predictive control of solid oxide fuel cells using fuzzy Hammerstein models [J].Journal of Power Sources, 2006, 158 (1): 245-253. 被引量:1
  • 5Liy H, Choi S S, Rajakaruna S. An analysis of the control and op- eration of a solid oxide fuelcell power plant in an isolated system [J]. IEEE Tr-ansaetions on Energy Conversion, 2005, 20 (2) 381 - 387. 被引量:1
  • 6Aguiar P, Adjiman C S, Brandon N P. Anode-supported interme- diate temperature direct internal refo-rming solid oxide fuel cell II. Model-based dynamic performance and control [J]. Journal of Power Sources, 2005, 147 (1 - 2): 136- 147. 被引量:1
  • 7Fei-Yue Wang, Huaguang Zhang, Derong Liu. Adaptive Dynamic Programming: An Introduetion [J], IEEE, 2009: 39- 47. 被引量:1
  • 8Wang Lin, Peng Hui, Zhu Huayong, Shen Lincheng. A Survey of Approximate Dynamic Programming [J], IEEE, 2009: 396- 399. 被引量:1

二级参考文献37

共引文献32

同被引文献38

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部