期刊文献+

基于类熵距离测量的热点话题识别方法研究 被引量:4

Research on Identifying Method for the Hot Topics Based on Class Entropy Distance Measurement
原文传递
导出
摘要 网络社区热点话题识别是监测与引导网络舆情的关键问题,本文针对该问题,通过分析热点话题的属性特征和应用离差最大化、类熵距离法,计算出各属性的权重和话题的正熵、负熵及优劣度,并据此对话题进行排序,找出热点话题。最后经实证验证该方法是合理有效的,所得结果可作为政府监控网络舆情的依据。 The online community hot topics recognition is the key problems of monitoring and guiding public opinion, for resolving the issue, in this paper we analyze the hot topic attributes and apply methods of deviation maximization and class entropy distance, calculate the weight of each attribute and the positive, negative entropy of each topic is entropy, and find hot topics according to sorting the topic. Finally the empirical test that this method is reasonable and effective; the results can be the basis for government monitoring public opinion.
作者 何建民 张义
出处 《情报科学》 CSSCI 北大核心 2012年第8期1147-1150,1166,共5页 Information Science
基金 国家自然科学基金资助项目(70631003 70672097) 教育部人文社会科学研究资助项目(10YJA630055)
关键词 网络话题 类熵距离测量 优劣度评价 热点话题识别 network topic class entropy distance measurement better-bad degree assessment hot topics recognition
  • 相关文献

参考文献12

二级参考文献39

共引文献83

同被引文献66

  • 1赵玲,张静.基于羊群效应的微博用户从众行为分析[J].大连理工大学学报(社会科学版),2013,34(4):92-97. 被引量:17
  • 2黄永文,何中市.基于互信息的统计语言模型平滑技术[J].中文信息学报,2005,19(4):46-51. 被引量:8
  • 3赵华,赵铁军,张姝,王浩畅.基于内容分析的话题检测研究[J].哈尔滨工业大学学报,2006,38(10):1740-1743. 被引量:20
  • 4Allan J, Papka R, Lavrenko V. On-line New Event Detection and Tracking [C]. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR'98). New York: ACM, 1998: 37-45. 被引量:1
  • 5Hofmann T. Probabilistic Latent Semantic Indexing [C]. In: Proceedings of the 22rid Annual International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR'99). New York: ACM, 1999: 50-57. 被引量:1
  • 6Zhai C, Velivelli A, Yu B.A Cross-collection Mixture Model for Comparative Text Mining [C]. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'04), Seattle, Washington, USA. New York: ACM, 2004: 743-748. 被引量:1
  • 7Yin Z, Cao L, Han J, et al. Geographical Topic Discovery and Comparison[C]. In: Proceedings of the 20th International Conference on World Wide Web (WWW'11). New York: ACM, 2011: 247-256. 被引量:1
  • 8Paul M J, Girju R. Cross-cultural Analysis of Blogs and Forums with Mixed-collection Topic Model[C]. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP'09). Stroudsburg: Association for Computational Linguistics, 2009:1408-1417. 被引量:1
  • 9Paul M J, Girju R. Comparative Scientific Research Analysis with a Language-Independent Cross-Collection Model [J]. Procesamiento del Lenguaje Natural, 2010, 45:153-160. 被引量:1
  • 10Honglei Li. Virtual Community Studies: A Literature Review,Synthesis and Research Agenda [ R ]. Proceedings of the Ameri- ca's Conference on Information Systems, New York,2004. 被引量:1

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部