期刊文献+

新一代测序技术的研究进展 被引量:10

Advances in Next-generation Sequencing Technologies
原文传递
导出
摘要 大规模DNA测序技术是揭秘人类和其它生物遗传密码的重要技术,在分子生物学和基础医学领域有广泛应用。第二代测序技术的出现使DNA测序的通量大幅提高,测序的成本大幅下降,原来只有在大型测序中心才能完成的测序任务现在已经可以在更多的实验室展开。但是,早期的第二代测序技术仍然存在诸如文库构建过程复杂、测序成本依然较高等缺点。为了克服上述缺点,近三年发展了几种新的第二代和第三代测序技术,这些技术不仅继承了早期第二代测序技术通量高的优点,而且在文库构建等方面取得了重要突破,进一步简化了测序操作,降低了测序成本,缩短了测序时间。本文就几种最新的大规模测序技术的原理、特点与发展趋势进行简要介绍。 Large-scale DNA sequencing technology is a very important tool for us to know genetic information of human and other species, and is widely used in the fields of molecular biology and basic medicine. Because second-generation sequencing is high-throughput and low cost, the sequencing task, which only could be completed in the large-scale seqrteneing centers in the past, can be accomplished in many common laboratories now by the second-generation sequencing technologies. However, some drawbacks still exist in second-generation sequencing technologies such as laborious process of library preparation and still high sequencing cost. To ov- ercome these drawbacks, a new second-generation sequencing technology and some third-generation sequencing technologies have developed in the past three years. These new large-scale DNA sequencing technologies not only inherited the advantages of high-throu- ghput of the early second-generation sequencing technologies, but also improved the process of library preparation, simplified the sequencing operations, reduced the sequencing cost and shortened the sequencing time. In this review, we briefly introduced the princi- ples, features and prospects of the latest large-scale DNA sequencing technologies.
出处 《现代生物医学进展》 CAS 2012年第19期3789-3793,共5页 Progress in Modern Biomedicine
基金 国家转基因生物新品种培育科技重大专项(2011ZX08012-005)
关键词 大规模DNA测序 单分子测序 第二代测序技术 第三代测序技术 Large-scale DNA sequencing Single-molecule sequencing Second-generation sequencing technologies Thkd-generat-ion sequencing technologies
  • 相关文献

参考文献26

  • 1Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature, 2005, 437 (7057): 376-380. 被引量:1
  • 2Bentley D R, Balasubramanian S, Swerdlow H P, et al. Accurate whole human genome sequencing using reversible terminator chemistry [J]. Nature,2008,456(7218): 53 -59. 被引量:1
  • 3Valouev A, Ichikawa J, Tonthat T, et al. A high-resolution, nucle-osome position map of C. elegans reveals a lack of universal sequen- ce-dictated positioning[J]. Genome Res,2008,18(7): 1051-1063. 被引量:1
  • 4Thomas R K, Nickerson E, Simons J F, et al. Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing[J]. Nat Med,2006,12 (7): 852 - 855. 被引量:1
  • 5Wang J, Wang W, Li IL et al. The diploid genome sequence of an Asian individual[J]. Nature,2008,456(7218):60-65. 被引量:1
  • 6Shen Y, Satin S, Liu Y, et al. Comparing platforms for C. elegans mutant identification using high-throughput whole-genome sequenci- ng[Y]. PLoS 0ne,2008,3(12):4012. 被引量:1
  • 7Rothberg J M, Hinz W, Rearick T M, et al. An integrated semiconductor device enabling non-optical genome sequencing [J]. Nature,2011,475(7356):348-352. 被引量:1
  • 8Howden B P, McEvoy C R, Allen D L, et al. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR [J]. PLoS Pathog, 2011,7(11):e1002359. 被引量:1
  • 9Rohde H, Qin J, Cui Y, et al. Open-sourco genomic analysis of Shiga-toxin-producing E. coli O104:H4 [J]. N Engl J Med,2011,365 (8):718-724. 被引量:1
  • 10Miller W, Hayes V M, Ratan A, et al. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil)[J]. Proe Natl Aead Sei USA,2011,108(30): 12348- 12353. 被引量:1

同被引文献209

引证文献10

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部