期刊文献+

结合字典稀疏表示和非局部相似性的自适应压缩成像算法 被引量:12

Adaptive Compressed Imaging Algorithm Combined the Sparse Representation in the Dictionaries with Non-Local Similarity
下载PDF
导出
摘要 如何以较少的观测值重构出高质量的图像是压缩成像系统的一个关键问题.本文根据图像块随机投影能量大小分布特点,提出了一种新的自适应采样方式以及针对自适应采样的有效重构算法.重构时利用了图像在字典下的稀疏表示原理和图像的非局部相似性先验知识.为实现图像的稀疏表示,文中构造了由多个方向字典和一个正交DCT字典组成的冗余字典,并用l1范数作为约束条件求解稀疏优化问题.由于充分利用了图像块的局部特性和图像的非局部特性,本文的压缩成像算法在低采样率下能重构出较高质量的图像. How to reconstruct the original image from fewer observations is still a crucial question in compressed imaging. According to the probability distribution characteristics of the random projection energy, a novel adaptive sampling method and the corresponding reconstruction algorithm are proposed. The algorithm makes full use of the priors of the sparse representation based on the dictionary and the non-local properties. In order to achieve the sparse image representation, we construct the redundant dictionary that contains several directional dictionaries and one orthogonal DCT dictionary, and solve the sparse optimization problem with con- straint of I1 norm. The proposed compressed imaging algorithm which combines the local traits of the image patches and the non-lo- cal properties of the image can reconstruct the high quality image in low sampling rate.
作者 练秋生 周婷
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第7期1416-1422,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61071200 No.60772079) 河北省自然科学基金(No.F2010001294)
关键词 压缩成像 自适应采样 冗余字典 稀疏表示 非局部相似性 compressed imaging adaptive sampling redundant dictionary sparse representation non-local similarity
  • 相关文献

参考文献22

  • 1E J Candes,M B Wakin. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine,2008,25(2) :21 - 30. 被引量:1
  • 2D L Donoho. Compressed sensing [ J ]. IEEE Transactions on Information Theory,2006,52(4): 1289- 1306. 被引量:1
  • 3石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:709
  • 4杨海蓉,张成,丁大为,韦穗.压缩传感理论与重构算法[J].电子学报,2011,39(1):142-148. 被引量:121
  • 5R G Baraniuk. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007,24(4) : 118 - 121. 被引量:1
  • 6E J Candes, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory, 2006,52(2) :489 - 509. 被引量:1
  • 7W Bajwa, J Haupt, A Sayeed, R Nowak. Compressive wireless sensing[ A ]. Proceedings of the fifth International Conference on Information Processing in Sensor Networks ( SN ' 06) [ C ]. New York, USA: ACM,2006.134 - 142. 被引量:1
  • 8M Lusfig,D L Donoho, J M Pauly. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine,2007,58(6) : 1182 - 1195. 被引量:1
  • 9S S Chen,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].Society for Industrial and Applied Mathematics, 2001,43(1) : 129 - 159. 被引量:1
  • 10J A Tropp, A C Gilbert. Signal recovery from random measurements via orthogonal matching pursttit- J]. IEEE Transactions on Information Theory,2007,53(12) :4655 -4666. 被引量:1

二级参考文献128

  • 1练秋生,孔令富.具有多方向选择性的小波构造[J].电子学报,2005,33(10):1905-1909. 被引量:6
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 3练秋生,孔令富.圆对称轮廓波变换的构造[J].计算机学报,2006,29(4):652-657. 被引量:12
  • 4R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 5Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 6Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 7E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 8E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 9Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 10G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1

共引文献815

同被引文献141

  • 1田捷,何余良,陈宏,杨鑫.一种基于相似度聚类方法的指纹识别算法[J].中国科学(E辑),2005,35(2):186-199. 被引量:4
  • 2李清勇,胡宏,施智平,史忠植.基于纹理语义特征的图像检索研究[J].计算机学报,2006,29(1):116-123. 被引量:25
  • 3张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 4沈焕锋,李平湘,张良培.一种自适应正则MAP超分辨率重建方法[J].武汉大学学报(信息科学版),2006,31(11):949-952. 被引量:21
  • 5DONOHO D. Compressed sensing[J]. IEEEE Trans In- ibrm Theory ,2006,51 (4) : 1289 - 1306. 被引量:1
  • 6CANDES E, ROMBERG J, TAO T. Robust uncertainty principles:Exact signal reconstruction from highly incom- plete frequency information [ J ]. IEEE Trans Inibrm , 2006,52 ( 2 ) :489 - 509. 被引量:1
  • 7RUBINSTEIN R, ELAD M. Double sparsity: learning sparse dictionaries for sparse signal approximation [ J ]. IEEE Transactions on Signal Processing, 2010, 58 (3) : 1553 - 1564. 被引量:1
  • 8AHARON M, ELAD M, BRUCKSTEIN A M. The K- SVD : an algorithm for designing of overcomplete dictiona- ries forsparse representation [ J ]. IEEE Transactions on Signal Processing, 2006, 54( 11 ) : 4311 -4322. 被引量:1
  • 9RUDELSON M, VERSHYNIN R. Sparse reconstruction by convex relaxation : Fourier and Gaussian measurements [C]//Proc CISS 2006 (40th Annual Conference on In- formation Sciences and Systems) , 2006. 被引量:1
  • 10KIM S J, KOH K, LUSTIG M, et al. A interiorpoint meth- od for large-scale Ll-regularized least-squares problems with applications in signal processing and statistics [ J ]. Journal of Machine Learning Research,2007,7 (8) :1519 - 1555. 被引量:1

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部