期刊文献+

一种基于支持向量机的植物根系图像边缘检测算法(英文) 被引量:1

An image edge detection algorithm of plant roots based on support vector machine
下载PDF
导出
摘要 由于传统边缘检测方法中存在的比如粗糙边缘、噪声边缘和不准确边缘等缺点,因此在植物根系的研究中,采用传统的图像边缘检测方法检测出来的边缘信息都无法达到令人满意的效果。本文基于支持向量机方法给出一种新型、简单有效的边缘检测算法。基于带高斯径向基核函数的最小二乘支持向量机,得到了一簇梯度算子和相应的二阶导数算子。用所得到的边缘检测算法与Canny和Prewitt算法的性能进行了比较。仿真结果表明本文给出的算法与传统算法相比,不仅边缘检测性能得到提高,而且可以一定程度地克服噪声干扰。 Considering the disadvantages in the traditional image edge detection methods, such as the rough edge, noise of the edge and inaccurate edge location, in the study of plant roots, using the traditional image edge detection method to detect the edge can't obtain satisfactory result. A new efficient image edge detection algorithm method based on support vector machine (SVM) was proposed to solve above problems. Based on least squares SVM with Gaussian radial basis function kernel, a set of the new gradient operators and the corresponding second derivative op- erators are obtained. The performance of the presented edge detection algorithm is compared with Canny and Prewitt detectors. The experimental resuh demonstrated that, compared with conventional detection methods, the proposed edge detection could not only improve edge detection properties, but also could overcome the noise interference to a certain degree.
作者 吴鹏 宋文龙
出处 《浙江农业学报》 CSCD 北大核心 2012年第4期721-726,共6页 Acta Agriculturae Zhejiangensis
基金 The Fundamental Research Funds for the Central Universities(Z02068)
关键词 植物根系 边缘检测 最小二乘支持向量机 高斯径向基核函数 plant roots edge detection support vector machine Gaussian radial basis function kernel
  • 相关文献

参考文献15

  • 1Graaf CN, Viergever MA. Information processing in medical imaging [ M ]. New York : Plenum Press, 1988. 被引量:1
  • 2Niblack W. An introduction to digital image processing [ R ]. Prentice Hall, Englewood Cliffs, 1986. 被引量:1
  • 3Russ J. The image processing handbook [ M ]. Boca Raton:CDC Press, 1994. 被引量:1
  • 4Rosenfeld A, Kak A. Digital picture preeeesing [ M ]. New York:Academic Press,1994. 被引量:1
  • 5Casfleman KR. Digital image processing [ R ]. Prentice-Hall, Upper Saddle Rive, 1996. 被引量:1
  • 6Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision [ R ]. Chapman and HaLl, Cambridge, 1993. 被引量:1
  • 7Smith M, Brady JM. SUSAN-a new approach to low lebel image processing [ J ]. International Journal of Computer Vision, 1997,23 ( 1 ) :45 - 78. 被引量:1
  • 8Perona P, Malik J. Scale space and edge detection using anisotrepic diffusion [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12 (7) :629 - 639. 被引量:1
  • 9Li J. A wavelet approach to edge detection[ D]. Houston:Sam Houston State University,2003. 被引量:1
  • 10Laptev I, Mayer H, Lindeberg T. Automatic extraction of roads from aerial images based on scale-space and snakes [J]. Machine Vision and Applications, 2000,12 ( 1 ) : 23 - 31. 被引量:1

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部