期刊文献+

基于EMD分解的聚类树状图轴承故障诊断 被引量:3

Clustering based on EMD decomposition tree bearing fault diagnosis
下载PDF
导出
摘要 针对滚动轴承故障振动信号的非平稳特征和故障征兆模糊性,提出了基于EMD和动态模糊聚类图的轴承故障诊断方法。运用EMD方法提取待诊断的轴承运行状态样本的能量特征指标,应用模糊聚类分析方法对特征参数进行聚类,并作出聚类树状图。结果表明,该方法不需要大量的样本进行学习,且能更直观、准确识别滚动轴承的运行状态。 For the non-stationary feature of a vibration signal of defective rolling bearings and the ambiguity of fault feature, a fault diagnosis method of rolling bearings is proposed using EMD ( Empirical Mode Decomposition ), Dynamic fuzzy clustering graph. Firstly, an EMD method was used to decompose a vibration signal of a rolling bearing. Then those parameters were analyzed by fuzzy clustering algorithm, and plotted amic fuzzy clustering graph. Experiments indicated that This method does not require a large number of samples for leaming, and And can more intuitivelt, accurately distinguish the running state of bearings.
出处 《机械》 2012年第7期1-4,共4页 Machinery
基金 国家自然科学基金资助项目(51175511)
关键词 EMD分解 动态模糊聚类图 故障诊断 emp iricalmode decomposition ( EMD ) dynamic fuzzy clustering graph fault diagnosis
  • 相关文献

参考文献7

二级参考文献14

共引文献29

同被引文献28

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部