期刊文献+

逆向交错三角格对应链环分支数的几个结论 被引量:1

Several Conclusions about the Component Number of Links Corresponding to the Reverse Alternating Triangular Lattices
下载PDF
导出
摘要 平图对应的链环分支数,是研究通过平图的中间图构造所对应的链环的基本问题之一.给出了逆向交错三角格图对应的链环分支数的计数的几个结论. Determining the component number of the corresponding link diagram may be one of the basic problems in studying links diagrams via the medial construction. The paper studies and proves the component number of links corresponding to the reverse alternating triangular lattices.
作者 林跃峰
出处 《衡水学院学报》 2012年第4期5-8,共4页 Journal of Hengshui University
基金 福建省教育厅A类科技项目(JA11332)
关键词 平图 逆向交错三角格图 Reidemeister变换 链环分支数 计数 plane graph reverse alternating triangular lattices Reidemeister move link component number enumeration
  • 相关文献

参考文献2

二级参考文献20

  • 1Shank H. The theory of left-right paths. Combinatorial Math. III, Lecture Notes in Mathematics. Berlin: Springer-verlag, 1975, 452: 42-54. 被引量:1
  • 2Vergnas M L. On Eulerian partitions of graphs. Graph theory and combinatorics, Research Notes in Mathematics. Pitman Advanced Publishing Program, 1979, 34: 62-75. 被引量:1
  • 3Pisanski T, Tucker T W, Zitnik A. Straight-ahead walks in Eulerian graphs. Discrete Math., 2004, 281: 237-246. 被引量:1
  • 4Endo T. The link component number of suspended trees. Graphs and Combinatorics, 2010, 26: 483-490. 被引量:1
  • 5Noble S D, Welsh D J A. Knot graphs. J. Graph Theory, 2000, 34: 100-111. 被引量:1
  • 6Richter R B. Spanning trees, Euler tours, medial graphs, left-right paths and cycle space. Discrete Math., 1991, 89: 261-268. 被引量:1
  • 7Tutte W T. A contribution to the theory of chromatic polynomials. Canad. J. Math., 1954, 6: 80-91. 被引量:1
  • 8Mphako E G. The component number of links from graphs. Proc. Edinb. Math. Soc., 2002, 45: 723-730. 被引量:1
  • 9Jin X, Dong F M , Tay E G. Determining the component number of links corresponding to lattices. J. Knot Theory Ramifications, 2009, 18(12): 1711-1726. 被引量:1
  • 10Jiang L, Jin X, Deng K. Determining the component number of links corresponding to triangular and honeycomb lattices. J. Knot Theory Ramifications, accepted for publication. 被引量:1

共引文献4

同被引文献12

  • 1MURASUGI K. Knot Theory and Its Applications [M]. Boston: Birkhauser, 1996: 14-39. 被引量:1
  • 2JIN Xian-an, DONG Feng-ming, TAY E G. On Graphs Determining Links with Maximal Number of Components via Medial Construction [J]. Discrete Appl Math, 2009, 156(14) : 3099-3110. 被引量:1
  • 3LIN Yue-feng, NOBLE S D, JIN Xian-an, et al. On Plane Graphs with Link Component Number Equal to the Nullity [J]. DiscreteApplMath, 2012, 160(9): 1369-1375. 被引量:1
  • 4JIN Xian-an, DONG Feng ruing, TAY E G. Determining the Component Number of Links Corresponding to Lattices [J]. J Knot Theor Ramif, 2009, 18(12): 1711-1726. 被引量:1
  • 5JIANG Le-ping, JIN Xian-an, DENG Ke-cai. Determining the Component Number of Links Corresponding to Triangular and Honeycomb Lattices [J]. J Knot Theor Ramif, 2012, 21(2) : 14. 被引量:1
  • 6MPHAKO E G. The Component Number of Links From Graphs [J]. P Edinburgh Math Soc, 2002, 45(3) : 723-730. 被引量:1
  • 7BONDY J A, MURTY U S R. Graph Theory [M]. Berlin: Springer, 2008. 被引量:1
  • 8NOBLE S D, WELSH D J A. Knot graphs [J]. J Graph Theory, 2000, 34(1): 100-111. 被引量:1
  • 9蒋乐萍,金贤安.几种曲面上的方格和三角格的左右路的计数(英文)[J].数学研究,2011,44(3):257-269. 被引量:5
  • 10唐保祥,任韩.2类图完美匹配的数目[J].西南师范大学学报(自然科学版),2011,36(5):16-21. 被引量:16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部