期刊文献+

无嗅卡尔曼滤波在移动机器人定位中的应用 被引量:2

Application of the Unscented Kalman Filter in Positioning of Mobile Robot
下载PDF
导出
摘要 为了更有效、可靠地从传感器原始数据中获取信息,介绍了一种移动机器人同步定位与地图创建的方法。该方法使用二维激光测距传感器实现室内环境中的移动机器人自主定位,依靠无嗅卡尔曼滤波器减少定位过程中所产生的误差;通过激光测距仪采集机器人所在环境数据的曲率函数,将环境特征分解为直线、拐角和曲线三类基本定位特征,并结合环境地图得到机器人位置和姿态的最优解。试验结果表明,该定位方法对于室内环境是有效的。 To obtain the information from the original data more effectively and reliably, the method of synchronous positioning and map creation for mobile robots is introduced. With this method, the 2-D laser range finding sensor is used for autonomous positioning of the robot under indoor environment; and the error caused in positioning procedures are reduced by unscented Kalman filter ( UKF ). Through collecting the curvature functions of the environmental data by laser range finder, the environmental feature is decomposed into three categories of positioning features, i. e. , straight lines, comers and curves; combining with environmental map, the optimal solution of the position and attitude for robot is obtained. The experimental results indicate that this positioning method is effective for indoor environment.
作者 梅黎锦
出处 《自动化仪表》 CAS 北大核心 2012年第7期15-18,共4页 Process Automation Instrumentation
关键词 机器人 定位 激光测距仪 无嗅卡尔曼滤波 计算精度 Robot Positioning Laser range finder Unscented Kalman filter Calculation accuracy
  • 相关文献

参考文献10

  • 1李桂芝..自主移动机器人导航定位技术研究[D].北京科技大学,2005:
  • 2Nguyen V, Martinelli A, Tomatis N, et al. A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics[ C]//IEEE International Conference on Intelligent Robots and Systems ,2005 : 1929 - 1934. 被引量:1
  • 3Xiang Z Y, Liu J L. Initial localization for indoor mobile robots using a 2D laser range finder[ C ]//Proceeding of SPIE mobile robot XVI, 2002 : 168 - 177. 被引量:1
  • 4Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems [ C ]//Proceeding of American Control Conference, Seattle, WA, 1995 : 1628 - 1632. 被引量:1
  • 5Kalman R E. A new approach to linear filtering and prediction problems [ J ]. Transaction of the ASME Journal of Basic Engineering,1960,82(D) :35 -45. 被引量:1
  • 6蔡自兴著..未知环境中移动机器人导航控制理论与方法[M].北京:科学出版社,2009:507.
  • 7Knieriemen T, Puttkamer E, Roth J. Extracting lines, circular segments and clusters from radar pictures in real time for an autonomous mobile robot[ C]//Proceeding of Euromicro Workshop on Real Time Systems, 1991:127 - 135. 被引量:1
  • 8Arras K O,Siegwart R. Feature extraction and scene interpretation for map based navigation and map building [ C ]//Proceeding of SPIE, Mobile Robotics XII, 1997. 被引量:1
  • 9Nash J C. Compact numerical methods for computers : linear algebra and function minimization [ M ]. New York : Halsted press, 1979. 被引量:1
  • 10Siegwart R, Nourbakhsh I R. Introduction to autonomous mobile robots [ M ]. Boston : MIT press,2004. 被引量:1

同被引文献10

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部