摘要
本文讨论了微商共同作用在半素环的某个 Lie理想上的问题 .给出了如下结果 :设R是带有中心 Z( R)的半素环 ,Qmr是 R的极大右商环 ,L是 R的非交换 L ie理想 ,d和δ是 R的微商 .假设 r R( [L ,L ]) =0且 d( x) x - xδ( x)∈ Z( R)对任意 x∈ L成立 ,则在 R的扩张形心C中存在一个幂等元 e使得 d( ( 1 - e) Qmr) =0和δ( ( 1 - e) Qmr) =0并且 e Qmr满足 S4.另外给出微商共同作用在半素环上多项式的结果 .
Let R be a semiprime ring with center Z(R),Q mr be the maximal right quotient ring of R,d and δ be the derivations of R,L be a noncommuting Lie ideal of R. Suppose that r R([L,L])=0 and d(x)x-xδ(x)∈Z(R) for all x∈L. Then there exists a idempotent e in the extended centroid of R such that d and δ induce zero derivations on (1-e)Q mr and eQ mr satisfies S 4. Finally we will give a theorem about derivations cocentralizeing multilinear polynomial in semiprime ring.
出处
《应用数学》
CSCD
2000年第2期80-85,共6页
Mathematica Applicata
基金
Thiswork is supported by the national Natural Science Foundation of China( 1 9671 0 3 5)