摘要
根据第 屠格式 ,从一个特征值问题出发 ,本文推得了一族新的耦合 m Kd V方程 .然后用迹恒等式给出了其无限维 Hamilton结构 .最后证明了该 Hamilton方程族是 Liouville可积的 ,并且有无穷多个彼此对合的公共守恒密度 .
In this paper, according to the second Tu's scheme, a new hierarchy of coupled mkdv equations is obtained from a isospectral problem. And then its infinite dimensional Hamiltonian structures are derived by using trace identity. Finally, it is shown that this hierarchy of equations is Liouville integrable and has a infinite set of common conserved denities which are in involution each another.
出处
《应用数学》
CSCD
2000年第2期37-40,共4页
Mathematica Applicata
基金
国家重点基础研究规划和博士点基金资助课题!(980 14119)
关键词
LIOUVILLE可积
哈密顿结构
耦合mKdV方程
Isospectral problem
Hierarchy of coupled mKdV equations
Hamiltonian structure
Liouville integrable
Conserved denity