期刊文献+

文本挖掘技术在科技管理领域热点主题抽取方向的应用研究 被引量:5

APPLIED STUDY ON TEXT MINING TECHNIQUE TO S&T MANAGEMENT FIELD HOT TOPIC EXTRACTION DIRECTION
下载PDF
导出
摘要 科技管理领域热点主题抽取过程主要历经文本挖掘技术中的数据采集与清洗、信息抽取、主题分析三个阶段。其中,热点主题抽取采用TF-IDF信息抽取算法,主题聚类采用共现方法中的合并聚类。通过热点主题抽取、趋势分析和聚类分析,可以实现领域热点工作的提前预测和科学决策,有助于推动政务领域信息的智能化和知识化。 The S&T management field hot topic extraction process mainly undergoes three stages:data acquisition and cleaning,information retrieval, and topic analysis. As for hot topic extraction, TF-IDF information extraction algorithm is applied; in terms of topic clustering, agglomerative clustering from concurrence method is applied. By means of hot topic extraction, trend analysis and clustering analysis, the forecast and scientific decision making for field hot work can be realized, which helps promote the government business field information intellectualization and knowledge-driving.
作者 施韶亭 曹方
出处 《计算机应用与软件》 CSCD 北大核心 2012年第7期109-111,140,共4页 Computer Applications and Software
基金 甘肃省科学技术研究与开发基金专项(0912TCYA026)
关键词 科技管理 文本挖掘 信息抽取 S&T management Text mining Information retrieval
  • 相关文献

参考文献12

  • 1袁军鹏编..科学计量学高级教程[M].北京:科学技术文献出版社,2010:275.
  • 2Berry M W, Kogan J. Text Mining: Applications and Theory [ M ]. John Wiley and Sons Itd,2010:149- 167. 被引量:1
  • 3Williams J R, Assimakopoulos D. Discerning Industrial Networks, Clusters and Competences-An Ahernative View Using Web Mining Techniques [ J ]. IFIP Advances in Information and Communication Technology,2010,336:279 - 286. 被引量:1
  • 4Wimmer M A, Codagnone C, Ma Xiaofeng. Developing an E-Government Research Roadmap: Method and Example from E-Gov [ J ]. RTD2020,2007,4656 : 1 - 12. 被引量:1
  • 5Patrick J. The Scamseek Project-Text Mining for Financial Scams on the Internet[ C ]//Lecture Notes in Computer Science,2006,3755:295 - 302. 被引量:1
  • 6Porter A L, Rafols I. Is science becoming more interdisciplinary? Measuring and mapping six research fields over time [ J ]. Scientometries, 2009,81(3) :719 -745. 被引量:1
  • 7Patman F,Thompson P. Names: A New Frontier in Text Mining[ C]// Lecture Notes in Computer Science,2003,2665/2003,960:27. 被引量:1
  • 8Grimes S. Unstructured Data and the 80 Percent Rule[ EB/OL]. [ 2011 -2 - 12 ]. http://www, clarabridge, corn/default, aspx? tabid= 137&ModuMD = 635&ArticleID = 551. 被引量:1
  • 9Cody W F, Kreulen J T, Krishna V, et al. The integration of business intelligence and knowledge management [J]. IBM Systems Journal,2010, 41(4). 被引量:1
  • 10张庆国,章成志,薛德军,张君玉.适用于隐含主题抽取的K最近邻关键词自动抽取[J].情报学报,2009,28(2):163-168. 被引量:4

二级参考文献19

  • 1李素建,王厚峰,俞士汶,辛乘胜.关键词自动标引的最大熵模型应用研究[J].计算机学报,2004,27(9):1192-1197. 被引量:92
  • 2张庆国,薛德军,张振海,张君玉.海量数据集上基于特征组合的关键词自动抽取[J].情报学报,2006,25(5):587-593. 被引量:17
  • 3Edmundson H P.New Methods in Automatic Abstracting Extracting[J].Journal of the Association for Computing Machinery,1969,16(2):264-285. 被引量:1
  • 4Chien L F.PAT-tree-based Keyword Extraction for Chinese Information Retrieval[C].∥Proceedings of the ACM SIGIR International Conference on Information Retrieval,Philadelphia,USA:ACM Press,1997:50-59. 被引量:1
  • 5Lois L E.Experiments in Automatic Indexing and Extracting[J].Information Storage and Retrieval,1970,6:313-334. 被引量:1
  • 6Salton G,Wong A,Yang C S.A Vector Space Model for Automatic Indexing[J].Communications of ACM,1975,18(11):613-620. 被引量:1
  • 7Turney P D.Learning to Extract Keyphrases from Text[J].NRC Technical Report ERB-1057,National Research Council,Canada.1999:1-43. 被引量:1
  • 8Turney P D.Learning algorithms for keyphrase extraction[J].Information Retrieval.2000,2:303-336. 被引量:1
  • 9Frank E,Paynter G W,Witten I H,et al.Domain-specific keyphrase extraction[C]∥Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99),California:Morgan Kaufmann,1999:668-673. 被引量:1
  • 10Anjewierden A,Kabel S.Automatic Indexing of Documents with Ontologies[C]∥Proceedings of the 13th Belgian/Dutch Conference on Artificial Intelligence (BNAIC-01),Amsterdam,Neteherlands,2001:23-30. 被引量:1

共引文献3

同被引文献100

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部