期刊文献+

基于视觉词汇形状描述的图像表示方法 被引量:1

Image representation based on visual vocabulary shape description
下载PDF
导出
摘要 针对目前图像表示中引入空间位置信息的空间金字塔匹配方法缺乏对图像中视觉物体平移、缩放和旋转的考虑,提出一种基于视觉词汇形状描述模型的图像表示方法。该方法相对于每个视觉单词的几何中心建立空间几何模型,保证平移不变性;给出对数极坐标空间金字塔匹配,对对数极半径做归一化,保证缩放不变性;在空间金字塔划分过程中确定极角的主方向,从而保证旋转不变性。分别在Caltech-101数据集和自建图像数据集上对该方法进行了验证和比较。实验结果表明,该方法提高了分类识别准确率,特别是对于包含明显平移、缩放和旋转变化的图像数据集;该方法的方差较小,说明其鲁棒性更强。 The Spatial Pyramid Matching(SPM)approach,which is based on approximate global geometric correspondence,disregards invariance to translation,scale and rotation of visual objects in images.This paper proposes an image representation method based on visual vocabulary shape description model.According to this method,spatial geometric model relative to the geometric center of each visual word is constructed to guarantee translation invariance;this paper presents log polar spatial pyramid matching,log polar radius is normalized and a consistent orientation to visual word is assigned in order to achieve scaling and rotation invariance.Experiments have been conducted for comparing and evaluating the proposed method utilizing the Caltech-101 dataset and this paper’s dataset.Experimental results show that the proposed method improves the classification accuracy,especially for the dataset containing images with obvious translation,scaling and rotation changes,and is more robust because of its smaller variance.
出处 《计算机工程与应用》 CSCD 2012年第21期191-196,204,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.51179146) 武汉市科学技术局科技攻关计划项目(No.201010621208)
关键词 物体分类 视觉词袋模型 图像表示 空间金字塔匹配 视觉词汇形状描述模型 object categorization bag-of-visual-words image representation spatial pyramid matching visual vocabulary shape description model
  • 相关文献

参考文献10

  • 1Leibe B,Leonardis A, Schiele B.Combined object catego- rization and segmentation with an implicit shape model[C]// Workshop on Statistical Learning in Computer Vision, ECCV, Prague, 2004. 被引量:1
  • 2Lazebnik S, Schmid C, Ponce J.Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]//Proceedings-2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, 2006: 2169-2178. 被引量:1
  • 3Salti S,Tombari F.On the use of implicit shape models for recognition of object categories in 3D data[C]//Lec- ture Notes in Computer Science, 2011,6494(3 ) : 653-666. 被引量:1
  • 4Pan Hong, Zhu Yaping, Xia Liangzheng, et al.Combining generic and class-specific codebooks for object categori- zation and detection[C]//IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, ICASSP, 2011 : 2264-2267. 被引量:1
  • 5Lampert C H,Blaschko M B,Hofmann T.Efficient sub- window search: a branch and bound framework for ob- ject localization[C]//IEEE Transactions on Pattern Analy- sis and Machine Intelligence,2009,31 (12) :2129-2142. 被引量:1
  • 6Yang Jianchao, Yu Kai, Gong Yihong, et al.Linear spatial pyramid matching using sparse coding for image classi- fication[C]//2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR, 2009: 1794-1801. 被引量:1
  • 7Wang Jinjun, Yang Jianchao, Yu Kai, et al.Locality-con- strained linear coding for image classification[C]//Pro- ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, 2010: 3360-3367. 被引量:1
  • 8Perronnin F, Sanchez J, Mensink T.Improving the Fisher kernel for large-scale image classification[C]//Lecture Notes in Computer Science,2010,6314(4) : 143-156. 被引量:1
  • 9Zhou Xi, Yu Kai, Zhang Tong, et al.Image classification using super-vector coding of local image descriptors[C]// Lecture Notes in Computer Science, 2010, 6315(5): 141-154. 被引量:1
  • 10Li Feifei,Rob F,Pietro ELearning generative visual mod- els from few training examples: an incremental bayesian approach tested on 101 object categories[J].Computer Vision and Image Understanding, 2007,106( 1 ) : 59-70. 被引量:1

同被引文献2

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部