期刊文献+

有理Bézier曲线二阶导矢的界

Bound on the second derivative of rational Bézier curves
下载PDF
导出
摘要 有理Bézier曲线二阶导矢界的估计在CAGD中有重要的应用。把有理Bézier曲线的分子和分母分别看成整体,按照求导法则,得到有理Bézier曲线二阶导矢的表达式。由于求导会降低Bernstein基函数的次数,鉴于获取更好的估计式的需要,对其进行必要的升阶,使Bernstein基函数的阶数一致。利用有关的不等式的结论得出有理Bézier曲线二阶导矢界的估计式。 The estimation of bounds on the second derivative of rational Bézier curves has important applications in CAGD.Considering the numerator and denominator of the expression of rational Bézier curves as the global respectively,the expression of derivatives of rational Bézier curves is given,according to derivative rule.As derivation to Bernstein basis function decreasing degree of it,and need of gaining better estimation,it is necessary to elevate degrees of Bernstein basis function,so as to make them equal.By a conclusion of inequality involved,the estimation of bounds on the second derivative of rational Bézier curves is obtained.
作者 李宁
出处 《计算机工程与应用》 CSCD 2012年第21期160-162,173,共4页 Computer Engineering and Applications
基金 安徽高校省级自然科学基金项目(No.KJ2009B270Z) 淮南市科技计划基金项目(No.2011A08016) 淮南师范学院自然科学基金项目(No.2011LK77)
关键词 有理BÉZIER曲线 升阶 二阶导矢界 rational Bézier curves degree elevation second derivative bound
  • 相关文献

参考文献11

  • 1Floater M S.Derivatives of rational B6izer curves[J].Com- puter Aided Geometric Design, 1992,9 : 16 l- 174. 被引量:1
  • 2Hermann T.On the derivatives of second and third de- gree rational B6izer curves[J].Computer Aided Geomet- ric Design, 1999,16: 157-163. 被引量:1
  • 3Huang Youdu, Su Huaming.The bound on derivatives of rational B6izer curves[J].Computer Aided Geometric De- sign, 2006,23 : 698-702. 被引量:1
  • 4Wu Z, Lin F, Seah H, et al.Evaluation of difference bounds for computing rational B6izer curves and surfac- es[J].Computer & Graphics,2004,28:551-558. 被引量:1
  • 5Selimovic I.New bounds on the magnitude of the ratio- nal B6izer curves and surfaces[J].Computer Aided Geo- metric Design, 2004,21 : 321-326. 被引量:1
  • 6Zhang Renjiang,Ma Weiyan.Some improvements on the derivative bounds of rational B6izer curves and surfaces[J]. Computer Aided Geometric Design, 2006,23 : 563-572. 被引量:1
  • 7王国谨.计算机辅助几何设计[M].北京:高教出版社,施普林格出版社,2001.1-17. 被引量:16
  • 8黄有度,朱功勤.有理参数曲线的快速逐点生成算法[J].计算机学报,2001,24(8):809-814. 被引量:15
  • 9解本怀,王国瑾.参数曲线导矢界估计及在曲线绘制中的应用[J].软件学报,2003,14(12):2106-2112. 被引量:5
  • 10汪国昭.B6izer曲线曲面的离散求交方法[J].浙江大学学报:计算几何专辑,1984,18:108-119. 被引量:1

二级参考文献4

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部