期刊文献+

适用于时变信道环境的盲源分离算法 被引量:7

Blind Source Separation Algorithm for Time Varying Channel
下载PDF
导出
摘要 针对时变信道环境下的盲源分离问题,在现有实时盲分离算法的基础上,提出了两种适用于时变信道环境的实时盲源分离算法——基于优选函数EASI盲分离算法(EASI-function)和基于选优函数的峭度变步长盲分离算法(EASI-function-KVS)。EASI-function算法在信号分离的不同阶段采用不同的估计函数,从而使得算法在收敛速度和稳态性能两方面获得一个折中。EASI-function-KVS算法则在EASI-function的基础上,利用峭度变步长的思想,自适应地调整迭代步长大小,进一步改善分离算法性能。仿真结果表明,两种算法能有效地跟踪信道变化,并且在性能方面比传统的EASI算法要好。 Aiming at the problem of blind source separation (BSS) in time varying channel, two real time BSS algorithms are presented: equivariant adaptive source separation via independence (EASI) BSS algorithm based on optimal selective function (EASI-function) and BSS based on optimal selective function algorithm with variable step-size based on kurtosis (EASI-function-KVS). EASI-function algorithm adopts the different estimate function in different stage to get the balance between divergence speed and steady-state performance. And the EASI-function-KVS algorithm changes the step-size adaptively based on kurtosis thought so as to improve the performance of algorithm. Simulation results show that the algorithms in the paper can trace the channel changes effectively and the performance is superior to that of conventional EASI algorithm.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第4期512-515,共4页 Journal of University of Electronic Science and Technology of China
基金 高等学校学科创新引智计划(B08038) 中央高校基本科研业务费专项资金(721024669)
关键词 算法 盲源分离 信号处理 时变信道 变步长 algorithm blind source separation signal processing time-varying channel, variable step-size
  • 相关文献

参考文献11

  • 1MAHMOUD A E, AMMAR R A, ELADAWY M I, et al. Improving the performance of the instantaneous blind audio source separation algorithms[C]//Signal Processing and Information Technology. Ajman: IEEE Press, 2009: 519-526. 被引量:1
  • 2ZHENG Yi, XIE Xian-zhong, YANG Li-li. Cooperative spectrum sensing based on blind source separation for cognitive radio[C]//Future Information Networks. Beijing: IEEE Press, 2009: 398-402. 被引量:1
  • 3LIN Bo, ZHANG Bang-ning, GUO Dao-shen. Blind source separation in noisy environment and applications in satellite communication anti-jamming[C]//Asia-Pacific Conference on Computational Intelligence and Industrial Applications. Beijing: IEEE Press, 2009, 2: 96-99. 被引量:1
  • 4付卫红,杨小牛,刘乃安.基于盲源分离的CDMA多用户检测与伪码估计[J].电子学报,2008,36(7):1319-1323. 被引量:34
  • 5HYV,tRINEN A, OJA E. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997, 9(7): 1483-1492. 被引量:1
  • 6XIE Xiao-fu, SHI Qing-yath WU Ren-biao, A New variable step-size equivariant adaptive source separation algorithm [C]//Asia-Pacifie Conference on Communications. Bangkok 1EEE Press, 2007: 479-482. 被引量:1
  • 7OU Shi-feng, Gao Ying, Jin Gang, et al. Variable step size algorithm for blind source separation using a combination of two adaptive separation systems[C]//lntemational Conference on Natural Computation. Tianjin: IEEE Press, 2009, 3: 649-652. 被引量:1
  • 8CHAMBERS J A, JAFARI M G , MCLAUGHLIN S. Variable step-size EASI algorithm for sequential blind source separation[J]. Electronics letters, 2004, 40(6): 1-2. 被引量:1
  • 9YUAN Lian-xi, WANG Wen-wu, CHAMBERS A. Variable step-size sign natural gradient algorithm for sequential blind source separation[J]. 1EEE Signal Processing Letters, 2005, 12(8): 589-592. 被引量:1
  • 10C,OSO J E Equivariant adapative source separation[J]. IEEE Transaction on Signal Processing, 1996, 44(12): 3013-3030. 被引量:1

二级参考文献25

  • 1许耀华,胡艳军,张媛媛.基于离散粒子群算法的CDMA多用户检测方法[J].通信学报,2005,26(7):109-113. 被引量:11
  • 2Comon P. Independent Component Analysis, a New Concept[J]. Signal Processing, 1994, 36(3) : 287-314. 被引量:1
  • 3Yang H H, Amari S I. Adaptive On-line Learning Algorithms for Blind Separation: Maximum Entropy and Minimum Mutual Information[J]. Neural Computations, 1997, 9(8): 1457-1482. 被引量:1
  • 4Amari S I. Natural Gradient Works Efficiently in Learning[J]. Neural Computations, 1998, 10(2) : 251-276. 被引量:1
  • 5Cardoso J F, Laheld B. Equivariant Adaptive Source Separation[J]. IEEE Trans on Signal Processing, 1996, 44(12): 3017-3030. 被引量:1
  • 6Leen T W, Girolami M, Sejnowski T J. Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources[J]. Neural Computations, 1999, 11(3): 409-433. 被引量:1
  • 7Choi S, Cichocki A, Amari S I. Flexible Independent Component Analysis[J]. Journal of VLSI Signed Processing, 2000, 26(1): 25-38. 被引量:1
  • 8Cruces-Alvarez S, Cichocki A, Castedo-Ribas L. An Iterative Inversion Approach to Blind Source Separation[J]. IEEE Trans on Neural Networks, 2000, 11(6): 1423-1437. 被引量:1
  • 9Amari S I, Cardoso J F. Blind Source Separadon--Semiparametric Statistical Approach[J]. IEEE Tram on Signal Processing, 1997, 45(11): 2692-2697. 被引量:1
  • 10Douglas S C, Cichocki A. Adaptive Step-slze Techniques for Decorrelation and Blind Source Separation[ A]. Proc 32nd Asilomar Conf on Signals, Systems and Computers[C]. Pacific Grove, CA: [s.n.], 1998. 1191-1195. 被引量:1

共引文献47

同被引文献72

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部