摘要
The microstructure and dielectric properties of Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3(x=0,0.04,0.08,0.12,0.16) ceramic system were investigated.The Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 ceramics were prepared by the traditional solid-state reaction method and were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and Raman spectrometer.The sintering ability and dielectric properties of Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 were found to be improved with the doping of Mn4+ and W6+ ions.The densification temperature of Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 ceramics decreased from 1 080 ℃ to 1 000 ℃ when x increased from 0 to 0.16.Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 ceramic was found to have the best dielectric properties when x=0.08,larger permittivity(■=547) and smaller dielectric loss(tan■=0.00156).
The microstructure and dielectric properties of Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3(x=0,0.04,0.08,0.12,0.16) ceramic system were investigated.The Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 ceramics were prepared by the traditional solid-state reaction method and were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and Raman spectrometer.The sintering ability and dielectric properties of Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 were found to be improved with the doping of Mn4+ and W6+ ions.The densification temperature of Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 ceramics decreased from 1 080 ℃ to 1 000 ℃ when x increased from 0 to 0.16.Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 ceramic was found to have the best dielectric properties when x=0.08,larger permittivity(■=547) and smaller dielectric loss(tan■=0.00156).