期刊文献+

R^2中具有趋化性的抛物-椭圆系统的解的性态分析

Norm Behavior of Solutions To a Parabolic-Elliptic System Modeling Chemotaxis in R^2
原文传递
导出
摘要 在二维空间中讨论了一个抛物-椭圆系统,而该系统来源于生物学中的趋化性模型.主要在Sobolev空间的框架下讨论了解的全局存在性与解的爆破性质,得出结论该系统存在一个门槛值,而该值决定了解全局存在或者发生爆破.最后利用利李亚普诺夫函数给出了定理的证明并得出结论. We studied a parabolic-elliptic system defined on a domain of R2 which comes from a chemotactic system in Biology. We proved the existence in time or blow up solution to this problem in Sobolev spaces framework. Next we proved that there is a critical number which determines the occurrence of blow-up case, Finally, we gave the proof of the theorem with the help of Lyapunov function.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第13期222-227,共6页 Mathematics in Practice and Theory
基金 河南省教育厅基金项目(2011C110005)
关键词 抛物-椭圆系统 Keller-Segel模型 趋化性 解的爆破 parabolic-elliptic system Keller-Segel model chemotaxis blow up of solutions
  • 相关文献

参考文献10

  • 1Keller EF, Segel LA. Initiation of slime mold aggregation viewed as an instability [J]. Journal of Theoretical Biology, 1970, 26(3): 399-415. 被引量:1
  • 2Nagai T. Blow up of radially symmetric solutions to a chemotaxis system [J]. Adv Math Sci Appl, 1995, 5: 581-601. 被引量:1
  • 3Chilldress S, Percus JK. Nonlinear aspects of chemotaxi[J]. Math Biosci, 1981, 56: 217-237. 被引量:1
  • 4Senba T, Suzuki T. Local and norm behavior of blow up solutions to a parabolic system of chemo- taxis[J]. J Korean Math Soc, 2000, 37: 929-941. 被引量:1
  • 5Chen H, Zhong XH. Global existence and blow-up for the solutions to non]inea:: parabolic-elliptic system modelling chemotaxis [J], IMA Journal of Applied Mathematics, 2005, 7(}: 221-240. 被引量:1
  • 6Dirk Horstmann, Michael Winkler. Boundness vs. blow-up in a chemotaxis system[J]. Journal of Differential Equations, 2005, 215: 52-107. 被引量:1
  • 7Sabine Hittmir, Ansgar J. Ungel. Cross Difusion Preventing Blow Up in the Two-dimensional Keller-Segel Model[J]. Journal on Mathematical Analysis, 2011, 1: 1-27. 被引量:1
  • 8Piotr Biler, Grzegorz Karch. Blow up of solutions to generalized keller-segel model[J]. Journal of Evolution Equations,. 2010, 10: 247-262. 被引量:1
  • 9Yan Guo, Hyung Ju Hwang. Pattern formation(I): The Keller-Segel model[J]. Journal of Differential Equations, 2010, 249(7): 1519-1530. 被引量:1
  • 10叶其孝,李正元.反应扩散方程理论[M].北京:科学出版社,1994. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部