期刊文献+

基于最大后验概率的SAR图像目标分割算法 被引量:1

The maximum-a-posterior based SAR image target segmentation algorithm
下载PDF
导出
摘要 文中使用最大后验概率(MAP)分类方法实现合成孔径雷达(SAR)图像目标分割,并与基于偏微分方程(PDE)的各向异性扩散(AD)过程结合起来,使MAP分类准则得到更好的分割结果。AD过程是作用在后验概率上的空域滤波器,具有高效、精确和简洁的优点,并对图像数据的分布特性具有很强的适应性。这种方法需要先将图像从灰度域转化到后验概率域,因此需要对像素灰度分布进行条件概率分布建模,并进行参数估计。文中巧妙的使用有限混合高斯分布模型来逼近条件概率分布,并用期望最大化(EM)方法用来实现参数估计。在引入这种新奇的混合高斯分布模型后,基于MAP-AD的分割算法对地面SAR图像获得了很好的分割结果并对图像灰度分布具有很强的鲁棒性。 The paper combines the maximum-a-posterior (MAP) classify method and an anisotropic diffusion (AD) smoothing process to realize the SAR image target segmentation. The AD smoothing process is based on partial differentialequation (PDE) ' s accurate numerical implementations, and can be considered as spatial filtering of posterior probabilities and takes the benefits of high efficiency, accuracy and simplicity, and it is robust to data distribution properties. This method needs a transformation from image gradation domain to posterior probability domain, which needs an adaptive conditional distribution modeling of pixel intensive with accurate and efficient parameter estimation. It ingeniously used the mixed Gaussian distribution model to approximate actual pixel intensity and expectation-maximize ( method gains qualified EM ) method to implement the estimation. The MAP-AD based segmentation results for the ground SAR image, and becomes robust to image gradation distribution property after introducing the novel mixed Gaussian distribution model.
出处 《信息技术》 2012年第6期121-123,127,共4页 Information Technology
关键词 合成孔径雷达 图像分割 最大后验概率 各向异性扩散 synthetic aperture radar (SAR) image segmentation maximum-a-posterior (MAP) anisotropic diffusion (AD)
  • 相关文献

参考文献11

  • 1宋建设,郑永安,袁礼海.合成孔径雷达图像理解与应用[M].北京:科学出版社,2008:5-8. 被引量:13
  • 2GaoGui, Zhao Lingjun, Zhang Jun, et al. A Segmentation algorithm for SAR images based on the anisotropic heat diffusion equation[J]. Pattern Recognition, 2008,41:3035 - 3043. 被引量:1
  • 3Jean-Marc Laferte, Patrick Perez, FabriceHeitz. Discrete Markov Image Modeling and Inference on the Quadtree [ J ]. IEEE Transac- tions on Image Processing, Mar. 2000,9(3) :390 -404. 被引量:1
  • 4Steven Haker, Guillermo Sapiro, Alien Tannenbaum. Knowledge- Based Segmentation of SAR Data with Learned Priors [ J ]. IEEE Transactions on Image Processing, Feb. 2002,9 (2) :299 - 30 I. 被引量:1
  • 5Anthony Yezzi Jr. , Andy Tsai, Alan Willsky. A Fully Global Ap- proach to Image Segmentation via Coupled Curve Evolution Equa- tions[ J ].Joumal of Visual Communication and Image Representa- tion, 2002,13 : 195 - 216. 被引量:1
  • 6容观澳.计算机图像处理[M].北京:清华大学出版社,2000.. 被引量:96
  • 7Kong YY, Zhou JJ. A New Method of SAR Image Reconstruction and Segmentation[C]. 2009 International Asia Conference on Informa- tion in Control, Automation and Robotics, Feb. 1st-2nd 2009: 249 - 253. 被引量:1
  • 8张翠.高分辨率SAR图像自动目标识别方法研究[D].控制科学与工程,国防科大博士学位论文,2003:13-19. 被引量:1
  • 9Patrick C Too, Guillermo Sapim, Brian A Wandell. Anisotropic Smoothing of Posterior Probabilities [ C ]. Proceedings of International Conference on Image Processing,1997,1:675 -678. 被引量:1
  • 10Gerig G , Kubler O, Kikinis R, et al. Nonlinearanisotropic filte- ring of MRI data[J]. IEEE Trans. MediealImaging,1992,11 (2) : 221 - 232. 被引量:1

共引文献107

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部