摘要
针对煤炭输送机减速器出现的故障,提出在多信息融合模型的特征层使用概率神经网络(PNN)对其进行故障诊断的研究。使用PNN、BP对减速器齿轮故障进行仿真实验并比较,结果表明PNN在时间、准确度方面优于BP网络。
In the light ot the coal conveyor reducer fault,this paper presents a probabilistic neural network (PNN) for fault diagnosis which can be used in feature layer of multiple information fusion model.This paper uses two mathods (PNN,BP) to diagnosis the reducer gear failure.Simulation experiments results reflect that PNN is superior to BP network in time and accuracy.
出处
《工业控制计算机》
2012年第6期43-44,47,共3页
Industrial Control Computer
关键词
煤炭输送机
概率神经网络
减速器
齿轮
反向传播神经网络
the coal conveyor,probabilistic neural network,gear reducer, back propagation neural network