期刊文献+

自抽真空飞轮储能装置的数值模拟与实验研究 被引量:1

Numerical Simulation and Experimental Study of Self-pumping Vacuum Flywheel Energy Storage Device
下载PDF
导出
摘要 针对盘式电机型飞轮储能装置的飞轮风损情况,采用自抽真空飞轮储能装置来减少飞轮风损,设计了飞轮储能装置的内置分子泵,再用计算流体动力学法模拟内置分子泵转子螺旋槽内的气体粘滞流、滑移流,分析其抽真空性能,最后进行自抽真空方式与普通外置真空系统对飞轮储能装置抽真空时间对比。结果表明:自抽真空飞轮储能装置的内置分子泵螺旋槽入口与出口总存在压力差,在12 000 r/min~60 000 r/min范围内抽真空性能较好,达到0.01 Pa所需时间仅为外置真空系统抽气时间的1/20左右,表明此装置抽气时间短并切实可行。 Due to the wind loss of flywheel in disc motor type flywheel energy storage devices, the paper focused on using self-pumping vacuum flywheel energy storage devices to reduce the wind loss, an interior molecular pump of flywheel energy storage devices is designed, and viscous gas flow and slip flow in the rotor spiral groove of the inte- rior molecular pump is simulated by computational fluid dynamics method to analyze its vacuuming performance. The vacuum-pumping time of flywheel energy storage devices in self-pumping style is compared with that in common external vacuum system. The results demonstrate that there always exists pressure difference between the entrance and the exit of the rotor spiral groove of the interior molecular pump of self-pumping style. Within the scope of 12 000 r/min - 60 000 r/min, vacuuming performance is good, and it only takes 1/20 of the time when the common external vacuum system needs to reach 0.01 Pa.
出处 《机械科学与技术》 CSCD 北大核心 2012年第7期1037-1041,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 湖南省科技计划项目(2011SK3264)资助
关键词 自抽真空飞轮储能装置 内置分子泵 泵转子 计算流体动力学 self-pumping vacuum flywheel energy storage device interior molecular pump rotor of molecular pump CFD
  • 相关文献

参考文献11

  • 1Strasik M, Hull J R, Mittleider J A, Gonder J F, et al. An over- view of Boeing flywheel energy storage systems with high-tempera- ture superconducting bearings [ J ]. Superconductor Science and Technology, 2010,23(2). 被引量:1
  • 2Werfel F N, Floegel-Delor U, Riedel T, Rothfeld R, et al. 250 kW Flywheel with HTS magnetic bearing for industrial use [ J ]. Journal of Physics: Conference Series, 2008,97 ( 1 ). 被引量:1
  • 3Chew A D, Gaitry M, Livesey R G, Stones I. Towards the single pump solution: recent development in high speed machines for dry vacuum pumping[ JJ. Journal of Vacuum Science & Tech- noio2v. 2005 .A23 (5) :1314- 1318. 被引量:1
  • 4刘坤,巴德纯,张振厚,王光玉,常学森,杨乃恒.一种适于直排大气的罗茨干泵转子的型线与结构[J].真空科学与技术学报,2007,27(5):446-449. 被引量:5
  • 5于治明,刘波,巴德纯,杨乃恒.涡轮分子增压泵的研究现状与进展[J].真空,2003(4):32-38. 被引量:2
  • 6Jou R Y, Tzeng S C, Liou J H. Pumping speed measurement and analysis for the turbo booster pump [ J ]. International Journal of Rotating Machinery, 2004,10 : 1-13. 被引量:1
  • 7卫海岗,戴兴建,沈祖培.储能飞轮风损的理论计算与试验研究[J].机械工程学报,2005,41(6):188-193. 被引量:13
  • 8Chen F Z, Tsai M J, Chang Y W, Jou R Y, et al. Using plucker coordinates for pumping speed evaluation of molecular pump in the DSMC method[J]. International Journal of Rotating Ma- chinery, 2001,7( 1 ) :11-20. 被引量:1
  • 9Tsui Y Y, Jung S P. Analysis of the flow in the grooved pumps with specified pressure boundary conditions [ J ]. Vacuum, 2006,81:401 - 410. 被引量:1
  • 10Chang Y W, Jou R Y, Cheng H P, et al. Pumping performance analyses of a turbo booster pump by direct simulation Monte Carlo method [ J ]. Vacuum, 2001,60:291 - 298. 被引量:1

二级参考文献35

  • 1Kenich. Nanbu.Direct simulation scheme derived from the Bolzamann Equation[J]. Journal of the Physical Society of Japan, 1980,49(5) :2042. 被引量:1
  • 2Kenich. Nanbu,Monte Carlo simulation of the growth rate of films in a CVD diffusion reactor [J].Trans,JSME 1991,B57(11) :120. 被引量:1
  • 3J. C. Helmer and G. Levi[J]. Vac. Sci. Technol. 1995,A13:2592. 被引量:1
  • 4T. Sawada ,M. Nakamura and A. Abumiya, [J]. Vacuum, 1992,43 : 1097. 被引量:1
  • 5T. Sawada.[J]. Vacuum, 1993,44: 689. 被引量:1
  • 6K. Nanbu and S. Igarashi. Comut, fluids[J]. 1992,21 :221. 被引量:1
  • 7M. Spagnol, R. Cerruit and J. C. Helmer. [J ]. Vac.Technol. 1998,A16:1151. 被引量:1
  • 8R. Y. Jou,H. P. Chang,Y. W. Chang,F. Z. Chen, [J].Vac. Sci. Technol. 2000,A18(3) : 1016. 被引量:1
  • 9H. P. Cheng,R Y. Jou,F. Z. Chen,Y. W. Chang,M. Iwane ,and T. Hanaolka. [J]. Vacuum. 1999,53 : 227. 被引量:1
  • 10H. P. Cheng, R. Y. Jou,F. Z. Chen,Y. W. Chang, M. Iwane, and T. Hanaolka. [J]. Vac. Sci. Technol. 2000,A18(2) :543. 被引量:1

共引文献17

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部