期刊文献+

Electrochemical behavior of Li incorporation in Al in LiTFSI/KTf molten salt electrolyte

LiTFSi/KTf熔盐电解质中锂在铝电极上的电化学行为(英文)
下载PDF
导出
摘要 The electrochemical behavior of lithium incorporated in aluminum electrode in LiTFSI/KTf (lithium bis (trifluoromethylsulfonyl) amide/CF3SO3K) molten salt electrolyte was studied by a variety of electrochemical techniques including cyclic voltammetry, chronopotentiometry and chronoamperometry. The reduction reaction is found involving a nucleation process on the aluminum electrode. The results of chronopotentiometry indicate that the process of lithium incorporation in aluminum is smooth and uniform. The galvanostatic cycle experiments show that the coulombic efficiency is very low in the first cycle, which is mainly due to the "retention capacity" of Li-Al alloys. This characteristic is testified by the results of XRD and SEM. The results of chronoamperometry indicate that the incorporation of lithium into aluminum for the formation of a-phase Li-Al alloy is limited by its diffusion rate, with a measured diffusion coefficient of 1.8× 10^-10 cm2/s. 采用循环伏安、计时电位和计时电流等电化学测试技术考察LiTFSI/KTf熔盐电解质中锂在铝电极上的电化学行为。结果表明:在该熔盐中,锂在铝电极上的电化学还原过程伴随着锂铝合金的成核过程,锂在铝电极上的嵌入过程平缓、稳定。恒电流充放电循环实验发现,首次循环的库仑效率很低,这主要归结于Li-Al合金对锂元素的持留能力。通过XRD和SEM表征了充放电前后铝电极的物相组成和表面形貌。计时电流实验发现,锂原子嵌入铝电极中形成α-Li-Al合金的过程受锂在铝基体内的扩散步骤控制,且该扩散系数为1.8×10-10cm2/s。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1495-1500,共6页 中国有色金属学报(英文版)
基金 Project (70510011) supported by Scientific Research Starting Foundation of Jiaxing University,China Project (84209001B3) supported by Open Fund of Key Laboratory of Clean Chemical Process of Jiaxing,China
关键词 molten salt aluminum electrode cyclic voltammetry coulombic efficiency nucleation process 熔盐 铝电极 循环伏安 库仑效率 成核过程
  • 相关文献

参考文献1

二级参考文献27

  • 1陈人杰,吴锋,粱宏莹,张存中.新型室温熔盐二(三氟甲基磺酸酰)亚胺锂-乙酰胺/乙烯脲体系的研究[J].高等学校化学学报,2004,25(11):2108-2111. 被引量:5
  • 2Guidotti R A, Reinhardt F W, Odinek J. Overview of high temperature batteries for geothermal and oil/gas borehole power sources. J. Power Sources, 2004, 136 (2): 257 -262 被引量:1
  • 3Masset P, Guidotti R A. Thermal activated (thermal) battery technology (Ⅱ): Molten salt electrolytes. J. Power Sources , 2007, 164 (1): 397- 414 被引量:1
  • 4Kaun T D, Nelson P A, Readay L, Vissers D R, Henriksen G L. High temperature lithium/sulfide batteries. Electrochim. Acta, 1993, 38 (9):1269-1287 被引量:1
  • 5Melendres C A. Kinetics of electrochemical incorporation of lithium onto aluminum. J. Electrochem. Soc., 1977, 124 (5): 650 -655 被引量:1
  • 6Fung Y S, Inman D H, White S. Studies of the kinetics of the lithium/aluminium electrode in molten LiCl-KCl by linear sweep voltammetry. J. Appl. Electrochem., 1982, 12:669-680 被引量:1
  • 7Singh P, Guidotti R A, Reisner D. Ac impedance measurements of molten salt thermal batteries. J. Power Sources, 2004, 138 (1/2):323-326 被引量:1
  • 8Vissers D R, Redey L, Kaun T D. Molten salt electrolytes for high temperature lithium cells. J. Power Sources, 1989, 26 (1/2): 37-48 被引量:1
  • 9Masset P, Henry A, Poinso J Y, Poignet J C. Ionic conductivity measurements of molten iodide-based electrolytes. J. Power Sources, 2006, 160 (1): 752 -757 被引量:1
  • 10Masset P. Iodide-based electrolytes: a promising alternative for thermal batteries. J. Power Sources, 2006, 160 (1): 688-697 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部