期刊文献+

使用粒子群算法进行特征选择及对支持向量机参数的优化 被引量:13

Use PSO to Perform Feature Selection and Parameter Optimization of SVM
下载PDF
导出
摘要 特征选取和参数设置是提升支持向量机分类器的效果的两个主要手段.为了将两者结合起来,实现同步优化,以达到更好的分类效果,设计了一种基于粒子群算法的分类器优化算法.新算法对粒子采用2进制编码的,设计适合的目标函数,同步进行特征选择和支持向量机参数的优化.经过对比验证,新方法能够更加准确的得到待分类数据的特征子集跟支持向量机参数,最终得到更优的处理结果. Feature selection as while as parameter optimization are two important way to improve SVM performance.In order to combine the two different way together to get a better classification effect,an new optimization algorithm based PSO is designed.The new algorithm uses Binary encode,and constructs proper target function to optimize the Feature selection and parameter optimization at the same time.Experiment s show that the new algorithm can quickly and exactly get a better suitable feature subset s and SVM parameters,and get a better classification effect.
作者 张俊才 张静
出处 《微电子学与计算机》 CSCD 北大核心 2012年第7期138-141,共4页 Microelectronics & Computer
关键词 支持向量机 参数优化 粒子群算法 2进制编码 SVM parameter optimization PSO Binary encode
  • 相关文献

参考文献8

  • 1John G H, Kohavi R, Pfleger K. Irrelevant features and the subset selection problem [C]// Proceedings of the Eleventh International Conference on Machine Learning. New Brunswick, N J, USA: Morgan Kauf- mann, 1994: 121-129. 被引量:1
  • 2Kohavi R, John G H. Wrappers for feature subset se- lection [J]. Artificial Intelligence, 2010, 97 (122): 273-324. 被引量:1
  • 3Huang C-L, Wang C-J. A GA-based feature selection and parameters optimization for support vector ma- chines[J]. Expert Systems wit h Applications, 2011, 31 (2): 231-240. 被引量:1
  • 4Shi Y, Eberhart tL A modified particle swarm optimi- zer[C]//IEEE World Conf on Computational Intelli- gence. Piscataway: IEEE,2005: 2675-2679. 被引量:1
  • 5Zhang L P, Yu H J, Hu S X. A new approach to im- prove particle swarm optimization[C] // Lecture Notes in Computer Science. Chicago: Springer Verlag, 2006 : 1036-1043. 被引量:1
  • 6Kennedy J, Eberhart R C. Particle swarm optimization [C] // Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 2010. 1942-1948. 被引量:1
  • 7张雯,杨春明,罗雪春.改进的粒子群优化算法(英文)[J].微电子学与计算机,2007,24(2):70-72. 被引量:11
  • 8任小康,郝瑞芝,孙正兴.基于单纯形法的量子粒子群优化算法[J].微电子学与计算机,2009:986-989. 被引量:1

二级参考文献7

  • 1Eberhart R C,Kennedy J.A new optimizer using particle swarm theory.Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,Piscataway,NJ:IEEE Service Center,1995,39~43 被引量:1
  • 2Eberhart R C,Shi Y.Comparison between genetic algorithms and particle swarm optimization.Evolutionary Programming Ⅶ:Proc.7th Ann.Conf.on Evolutionary Programming Conf.,San Diego,CA.Berlin:Springer-Verlag,1998 被引量:1
  • 3Kennedy J,Eberhart R C.Particle swarm optimization.Proc.IEEE Int'l.Conf.on Neural Networks,Ⅳ,Piscataway,NJ:IEEE Service Center.,1995,1942~1948 被引量:1
  • 4Kennedy J,Eberhart R C.A discrete binary version of.the particle swarm algorithm.Proc.1997 Conf.on Systems,Manand Cybernetics,Piscataway,NJ:IEEE Service Center,1997,4104~4109 被引量:1
  • 5Kenedy J,Spears W M.Matching algorithms to problems:an experimental test of the particle swam and some genetic algorithms on the multimodal problem generator.Proc.Intl.Conf.on Evolutionary Computation,Piscataway,NJ:IEEE Service Center,1998,78~83 被引量:1
  • 6Shi Y,Eberhart R C.Empirical study of particle swarm optimization.Proceedings of the 1999 Congress on Evolutionary Computation,Piscataway,NJ:IEEE Service Center,1999,1945~1950 被引量:1
  • 7Wang K Huang,L Zhou,C Pang W.Particle swarm optimization for traveling salesman problem.Proceedings of the Second International Conference on Machine Learning and Cybermetics,2003,1583~1585 被引量:1

共引文献10

同被引文献121

引证文献13

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部