期刊文献+

最坏情况下X3SAT最大海明距离问题最小上界

Worst Case Upper Bound for the Maximum Hamming Distance X3SAT Problem
下载PDF
导出
摘要 X3SAT最大海明距离问题是指对于一个X3SAT问题实例,寻找该问题的任意两组可满足赋值之间的最大海明距离。提出了一个基于DPLL的精确算法HMX来求解X3SAT最大海明距离问题,根据公式中某个变量在两组真值赋值中的不同取值进行分支。给出了多种化简规则,这些规则很好地提高了算法的时间效率。证明了该算法可以将X3SAT最大海明距离问题的最小上界由目前最好的O(1.7107n)缩小到O(1.6760n),其中n为公式中变量的数目。 The maximum Hamming distance X-3-satisfiability (X3SAT) problem looks for the maximum Hamming distance between any two x-models of the formula F in 3-conjunctive normal form (3-CNF). This paper presents an exact algorithm HMX based on Davis-Putnam-Logemann-Loveland (DPLL) for the maximum Hamming distance X3 SAT problem. The algorithm branches on some variable according to its different values in two truth assignments of the formula. Before the branching some reduction rules are used to simplify the formula. The reduction rules increase the efficiency of the algorithm. The worst case upper bound for the problem is O(1.676 0^n), which improves the previous result O(1.710 7^n), where n is the number of the variables in the formula.
出处 《计算机科学与探索》 CSCD 2012年第7期664-671,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61070084 60803102 中央高校基本科研业务费专项资金No.11QNJJ006 浙江师范大学计算机软件与理论省级重中之重学科开放基金No.ZSDZZZZXK37~~
关键词 海明距离 可满足性(SAT) X3SAT DPLL 最坏情况 复杂性分析 上界 Hamming distance satisfiability(SAT) X3SAT DPLL worst case complexity analysis upper bound
  • 相关文献

参考文献15

  • 1Cook S A. The complexity of the theorem-proving proce- dures[C]//Proceedings of the 3rd Annual ACM Symposium on Theory of Computing (STOC '71), New York, May 3-5, 1971. New York, NY, USA: ACM, 1971: 151-158. 被引量:1
  • 2Hirsch E A. New worst-case upper bounds for SAT[J]. Jour- nal of Automated Reasoning, 2000, 24(4): 397-420. 被引量:1
  • 3Zhang Lintao, Madign C F, Moskewicz M H, et al. Efficient conflict driven learning in a Boolean satisfiability solver[C]// Proceedings of the 2001 1EEE/ACM International Confer- ence on Computer-Aided Design (ICCAD 2001), San Jose, Nov 4-8, 2001. Piscataway, NJ, USA: IEEE Press, 2001: 279-285. 被引量:1
  • 4Mezard M, Parisi G, Zecchina R. Analytic and algorithmic solution of random satisfiability problems[J]. Science, 2002, 297(5582): 812-815. 被引量:1
  • 5Monasson R, Zecchina R, Kirkpatrick S, et al. Determining computational complexity from characteristic 'phase transi- tions' [J]. Nature, 1999, 400: 133-137. 被引量:1
  • 6Monien B, Speckenmeyer E. Solving satisfiability in less than 2" steps[J]. Discrete Applied Mathematics, 1985, 10(3): 287-295. 被引量:1
  • 7Brueggemann T, Kem W. An improved local search algo- rithm for 3-SAT[J]. Theoretical Computer Science, 2004, 329(1/3): 303-313. 被引量:1
  • 8Monien B, problems[R] Speckenmeyer E. Upper bounds for covering Universitat-Gesarnthochschule-Paderbom: Reihe Theoretische Informatik, 1980. 被引量:1
  • 9Yamamoto M. An improved O(1.234")-time deterministic al- gorithm for SAT[C]//Proceedings of the 16th International Conference on Algorithms and Computation (ISAAC '05). Berlin, Heidelberg: Springer-Verlag, 2005: 644-653. 被引量:1
  • 10Kutzkov K. New upper bound for the #3-SAT problem[J]. Information Processing Letters, 2007, 105(1): 1-5. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部