摘要
We have extensively explored the ground-state structure of RuC using the particle swarm optimization algorithm for crystal structural prediction. A hexagonal I:t-3m structure has been proposed ms the best candidate, which is energetically more favorable than the previously proposed zinc blend structure. The R-3m-RuC possesses alternative stacking of double hexagonal close-packed Ru atom layers and C atom layers, and it is dynamically stable evidenced by the calculation of phonon dispersion. The calculated large bulk modulus, shear modulus, and elastic constant C44 reveal that it is an ultra-incompressible and hard material. The evidence of strong covalent bonding of Ru C, which plays an important role to form a hard material, is manifested by the partial densities of states analysis.
We have extensively explored the ground-state structure of RuC using the particle swarm optimization algorithm for crystal structural prediction. A hexagonal I:t-3m structure has been proposed ms the best candidate, which is energetically more favorable than the previously proposed zinc blend structure. The R-3m-RuC possesses alternative stacking of double hexagonal close-packed Ru atom layers and C atom layers, and it is dynamically stable evidenced by the calculation of phonon dispersion. The calculated large bulk modulus, shear modulus, and elastic constant C44 reveal that it is an ultra-incompressible and hard material. The evidence of strong covalent bonding of Ru C, which plays an important role to form a hard material, is manifested by the partial densities of states analysis.
基金
Project supported by the Natural Science Basic Research Plan of Shaanxi Province of China (Grant No. 2012JQ1005)
the Key Research Foundation of Baoji University of Arts and Sciences, China (Grant Nos. ZK1032, ZK11060, ZK11061, and ZK11146)
the Fund from the Phytochemistry Key Laboratory of Shaanxi Province, China (Grant No. 11JS008)