期刊文献+

恒力铣削智能控制算法研究与仿真(英文) 被引量:2

The Research and Simulation of Intelligent Control Strategies for Constant Force Milling
下载PDF
导出
摘要 针对数控加工,建立了 2 种以切削力恒定为控制目标的在线智能控制系统。首先,利用 BP 神经网络对铣削过程进行了建模; 然后,基于 BP 神经网络和模糊控制理论,提出了 2 种以切削力恒定为控制目标的在线铣削控制算法; 最后,在变轴向切削深度条件下开展了仿真实验。相对于传统恒速切削,基于 BP 神经网络和模糊控制的在线智能控制系统分别节省了 13.9% 和 13.7% 的切削时间。 This paper investigates the application of intelligent control strategies in milling process to get constant cutting force. Since the cutting process is under a good condition, the surface quality is improved and the higher accuracy is obtained. The milling process was modeled by a developed BP neural network. Intelligent control strategies based on neural network and fuzzy logic were proposed to guarantee the constant cutting force and improve the cutting efficiency. Simulations were conducted to verify the effectiveness of the proposed strategies and the results showed that the time saving of two strategies are 13.9% and 13.7%, respectively.
出处 《机床与液压》 北大核心 2012年第12期17-21,96,共6页 Machine Tool & Hydraulics
关键词 恒力铣削 智能控制算法 神经网络 模糊逻辑 constant force milling, intelligent control strategy, neural network, fuzzy logic
  • 相关文献

参考文献7

  • 1Zuperl U,Cus F,Reibenschuh M. Neural control strategy of constant cutting force system in end milling[J].Robotics and Computer Integrated Manufacturing,2011,(03):485-493. 被引量:1
  • 2Krishnamoorthy A,Boopathy S R,Palanikumar K. Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics[J].Measurement,2012,(05):1286-1296.doi:10.1016/j.measurement.2012.01.008. 被引量:1
  • 3Makhfi S,Habak M,Velasco R. Prediction of Cutting Forces Using ANNs Approach in Hard Turning of AISI 52100 steel[A].Belfast,NORTH IRELAND,2011.669-674. 被引量:1
  • 4Zuperl U,Cus F. System for off-line feedrate optimization and neural force control in end milling[J].International Journal of Adaptive Control and Signal Processing,2012,(02):105-123.doi:10.1002/acs.1277. 被引量:1
  • 5Zuperl U,Cus F,Milfelner A. Fuzzy control strategy for an adaptive force control in end-milling[J].Journal of Materials Processing Technology,2005.1472-1478. 被引量:1
  • 6LIU Y M,ZUO L,WANG C J. Intelligent adaptive control in milling processes[J].International Journal of Computer Integrated Manufacturing,1999,(05):453.doi:10.1080/095119299130182. 被引量:1
  • 7Landers R G,Ulsoy A G,Ma Y H. A comparison of model-based machining force control approaches[J].International Journal of Machine Tools and Manufacture,2004,(7/8):733-748.doi:10.1002/hec.1682. 被引量:1

同被引文献9

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部