摘要
The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA-ICP-MS zircon U-Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U-Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re-Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from -10 to -16, and -20 to -24, respectively, corresponding to two- stage model ages (tDM2: mainly focused on 1.86-2.0 Ga, and 2.2-2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore-forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from -18 to -20, -28 to -38, and -42 to -44, respectively, corresponding to two-stage model ages (tDM2: mainly focused on 1.88-3.0 Ga, and 3.2-3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two-stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.
The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA-ICP-MS zircon U-Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U-Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re-Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from -10 to -16, and -20 to -24, respectively, corresponding to two- stage model ages (tDM2: mainly focused on 1.86-2.0 Ga, and 2.2-2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore-forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from -18 to -20, -28 to -38, and -42 to -44, respectively, corresponding to two-stage model ages (tDM2: mainly focused on 1.88-3.0 Ga, and 3.2-3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two-stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.
基金
supported by the Basic Research Project for the Central Public Welfare Scientific Institutions(K1019) granted by the Institute of Mineral Resources,Chinese Academy of Geological Sciences
the ministry of land and resources public welfare industry research project of China (200911007-6)
the national crisis's mine resources prospecting project of China (20089949)