期刊文献+

基于选举模型理论研究股市特性 被引量:4

Features analysis of stock markets based on Voter model theory
下载PDF
导出
摘要 基于交互粒子系统之一的选举模型理论,构造了一个股票价格方程(模型)来实现股市价格和收益的模拟.文中讨论了选举模型理论中3个重要参数,强度、初始密度和网格维数,对股票收益统计特性及幂律分布的影响.为验证价格模型的有效性,对比上证综指、香港恒生指数及模拟收益,通过自相关系数分析、经典R/S分析法和修正R/S分析法来研究以上3个时间序列的长期依赖性.同时计算并检验了著名的Hurst指数,求取了以上3个金融序列的记忆周期. A random stock price model for simulation of stock prices and returns on the basis of Voter Model theory, which is one of the interacting particle systems, is constructed in this paper. The influences on statistical behaviors and power law distribution that three significant parameters in the Voter Model which are intensity, initial density and lattice dimension have been discussed and studied. Using different methods like autocorrelation coefficient analysis, classic R/S analysis and modified R/S analy- sis, the long-range dependence for SSECI, HSI, and simulative returns sequences for price model are investigated respectively to justify the effectiveness of the price model. Meanwhile, the significant Hurst exponent is given and its significance is tested while memory periods for three time series above are computed.
作者 牛红丽 王军
出处 《北京交通大学学报》 CAS CSCD 北大核心 2012年第3期138-144,共7页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(70771006 10971010)
关键词 股票价格 选举模型 价格公式 模拟 统计特性 长程依赖性 stock price Voter model price formula simulation statistical properties long-range dependence
  • 相关文献

参考文献15

  • 1Liggett T M. Interacting particle systems[M].New York:springer-verlag,1985. 被引量:1
  • 2Krawiecki A. Microscopic spin model for the stock market with attractor bubbling and heterogeneous agents[J].International Journal of Modern Physics C,2005,(04):549-559.doi:10.1142/S0129183105007285. 被引量:1
  • 3Mills T C. The econometric modeling of financial time series[M].Cambridge:Cambridge University Press,1999. 被引量:1
  • 4Silva LR,Stauffer D. Ising-correlated clusters in the ContBouchaud stock market model[J].Physica A:Statistical Mechanics and its Applications,2001,(1/2):235-238. 被引量:1
  • 5邵明亭,王军.用选举模型模拟股票收益过程的宽尾现象[J].北京交通大学学报,2006,30(3):93-96. 被引量:1
  • 6Tanaka H. A percolation model of stock price fluctuations[J].Mathematics and Economics,2002.203-218. 被引量:1
  • 7Lo A,MacKinlay A C. Stock market prices do not follow random walks:evidence from a simple specification test[J].Rev Fin Stud,1988,(01):41-66. 被引量:1
  • 8Hurst H E. Long term storage capacity of reservoirs[J].Transactions of the American Society of Civil Engineers,1951.770-799. 被引量:1
  • 9Mandelbrot B. Statistical methodology for non-periodic cycles:From the covariance to R/S analysis[J].Annals of Economic and Social Measurement,1972,(03):259-290. 被引量:1
  • 10Lo A W. Long-term memory in stock market prices[J].Econometrica,1991,(05):1219-1313.doi:10.2307/2938368. 被引量:1

二级参考文献5

  • 1王宁,王军.基于连续渗流的股市指数波动模型[J].北京交通大学学报,2004,28(6):36-38. 被引量:3
  • 2Lamberton D,Lapeyre B.Introduction to Stochastic Calculus Applied to Finance[M].New York:Chapman & Hall,2000. 被引量:1
  • 3Stauffer D,Penna T.Crossover in the Cont-Bouchaud Percolation Model for Market Fluctuations[J].Physica A,1998,256:284-290. 被引量:1
  • 4Liggett T.Stochastic Interacting Systems:Contact,Voter and ExclusionProcesses[M].Berlin Heidelberg:Springer-Verlag,1999. 被引量:1
  • 5Durrett R.Lecture Notes on Particle Systems and Percolation[M].Wadsworth,1988. 被引量:1

同被引文献27

  • 1Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637-654. 被引量:1
  • 2Makowiec D,Gnacinski P,Miklaszewski W.Amplified imitation in percolation model of stock market[J].Physica A:Statistical Mechanics and its Applications,2004,331(1):269-278. 被引量:1
  • 3Tanaka H.A percolation rnodel of stock price fluctuations[J].Mathematical Economics,2002,1264:203-218. 被引量:1
  • 4Zhang J H,Wang J.Modeling and simulation of the market fluctuations by the finite range contact systems[J].Simulation Modelling Practice and Theory,2010,18 (6):910-925. 被引量:1
  • 5Iori G.A threshold model for stock return volatility and.trading volume[J].International Journal of Theoretical and Applied Finance,2000,3(3):467-472. 被引量:1
  • 6Higuchi Y,Murai J,Wang J.The Dobrushin-Hryniv theory for the two-dimensional lattice Widom-Rowlinson model[J].Advanced Studies in Pure Mathematics,2004,39:233-281. 被引量:1
  • 7Liggett T.Interacting particle systems[M].New York:Springer-Verlag,1985:179-224. 被引量:1
  • 8Wang J.The estimates of correlations in two-dimensional Ising model[J].Physica A:Statistical Mechanics and its Applications,2009,388(5):565-573. 被引量:1
  • 9Wang J.Supercritical Ising model on the lattice fractal-the Sierpinski carpet[J].Modem Physics Letters B,2006,20(8):409-414. 被引量:1
  • 10Lamberton D,Lapeyre B.Introduction to Stochastic Calculus Applied to Finance[M].London:Chapman and Hall,2000:63-118. 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部