期刊文献+

基于马尔科夫链的区域综合交通客运结构预测 被引量:10

Regional Integrated Passenger Transport Structure Prediction Based on Markov Chain
下载PDF
导出
摘要 经济的快速发展要求有功能完善、结构合理的综合运输系统,对该系统进行合理预测与规划可避免交通设施重复建设,减少资源浪费.本文基于马尔科夫理论,预测区域综合交通客运结构发展规律.构建了基于马尔科夫链的区域综合客运结构发展模型,并以黑龙江省综合客运交通为例,确定了黑龙江省未来年份的客运结构.结果表明,黑龙江省水运在客运中占有的份额正在被其他方式所代替,部分铁路客运量向公路转移,四种客运方式分担比率除水运以外没有大的改变,民航所占份额有所减小.验证了客运结构发展预测的可靠性,可为相关部门管理者提供决策建议. The rapid development of economy puts the requirements for a integrated transportation system with perfect functions and reasonable structures. Reasonable forecasting and planning of regional comprehensive passenger transportation structure benefits for avoiding repetitive construetion of traffic facilities and then reducing the waste of resources. Based on the theory of Markov, the paper forecasts the structure of the regional integrated passenger transportation and proposes the structure development model based on the Markova chain. The integrated transportation data in Heilongjiang province of China are used to illustrate the future passenger structure prediction. Results show that the position of water transportation in Heilongjiang province is gradually being replaced by other transportation modes. One part of the railway passenger volume is transferring to highway. Except water transportation, other four passenger transportation modes have no big changes on share ratio, but the share of civil aviation decreased. The reliability of the predicted results is finally verified based on Markov Chain. The prediction results can provide decisionmaking advice for managers to some extent.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2012年第3期1-5,共5页 Journal of Transportation Systems Engineering and Information Technology
基金 十一五国家科技支撑重点项目子课题(2006BAJ18B01) 国家自然科学基金(51108136)
关键词 综合交通运输 客运结构预测 马尔科夫链 区域综合交通 分担比率 integrated transportation passenger transport structure prediction Markov chain regional comprehensive transportation sharing ratio
  • 相关文献

参考文献8

二级参考文献11

共引文献74

同被引文献91

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部