期刊文献+

基于BP神经网络的掌子面前方围岩自稳能力评估

Self-Stability of Tunnel Face in Front of Rock Evaluation Based on BP Neural Network
下载PDF
导出
摘要 地下工程依托地质体的岩石类型条件(围岩)直接关系到工程的精确口部选址、工程主体建设轮廓、工程施工手段和工程跨度,并且影响对工程的防护性能评估。为了精确评估围岩的稳定性,在BP神经网络的模型的基础上对其进行优化,建立了作业工程掌子面前方围岩稳定性评估模型。主要通过加入动量因子、采用自适应调节率这两种方法对传递函数进行优化,提高神经网络收敛速度;对于一些非线性、多模型、多目标的函数优化问题具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。通过对BP神经网络的的初始权值和阈值进行优化,跟围岩的受力特性进行比较,能精准快速评估围岩的稳定性,节约大量人力资源,提高工作效率。 Underground works relying on the geological conditions of the rock types (wall rock) is directly related to project precise mouth site, project main building outline, means of construction and engineering span, and affect the protective performance evaluation on the project. In order to accurately assess the stability of surrounding rock, based on the BP neural network model, optimize the operations engineering in front of face surrounding rock stability assessment model. By adding the momentum factor, use these two methods of adaptive adjustment of the transfer function to be optimized to improve the neural network convergence speed. For some non-linear, multi-model, multi-objective function, optimization problem is inherently implicit parallelism and better ability of global optimization. Use a probability-based optimization method that can automatically access and guidance to optimize the search space and adaptively adjust the search direction do not need to determine the rules. Optimize the initial weights and thresholds of BP neural network, compare them with the characteristics of the surrounding rock by the force, it can make accurate rapid assessment of the stability of surrounding rock, save human resources, and improve work efficiency.
出处 《兵工自动化》 2012年第7期55-58,共4页 Ordnance Industry Automation
基金 国家自然科学基金资助项目(70971137)
关键词 BP神经网络 遗传算法 围岩自稳能力评估 BP neural network genetic algorithm self-stability assessment of rock
  • 相关文献

参考文献9

  • 1Jorgensen TD, Haynes BP, Norlund CC. Pruning artificial neural networks using neural complexity measures, Int J Neural Syst, 2008, 18(5): 389-403. 被引量:1
  • 2Brion G M, Lingireddy S. Artificial neural network modeling: a summary of successful applications relative to microbial water quality, Water Science and Technology 2003, 47: 235-240. 被引量:1
  • 3Chert J, Adams B J. Integration of artificial neural networks with conceptual models in rainfall-runoff modeling, Journal of Hydrology, 2006, 318: 232-249. 被引量:1
  • 4刘启千,徐光黎.工程岩体质量分级的模糊综合评判[J].地球科学(中国地质大学学报),1989,14(3):291-296. 被引量:4
  • 5蔡广奎..围岩稳定性分类的BP网络模型研究[D].河海大学,2001:
  • 6周翠英,张亮,黄显艺.基于改进BP网络算法的隧洞围岩分类[J].地球科学(中国地质大学学报),2005,30(4):480-486. 被引量:47
  • 7Bode J. Neural networks for cost estimation: simulations and pilot application, International Journal of Production Research, 2000, 38(6): 1231-1254. 被引量:1
  • 8Harmel R D, Smith P K. Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling, Journal of Hydrology, 2007, 337: 326-336. 被引量:1
  • 9邹志鹏..基于围岩模糊分类的地下工程稳定性可靠度分析[D].湖南大学,2007:

二级参考文献10

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部