期刊文献+

融合LBP和GLCM的纹理特征提取方法 被引量:23

Texture Feature Extraction Method Fused with LBP and GLCM
下载PDF
导出
摘要 为提取有效的特征用于纹理描述和分类,提出一种融合局部二进制模式(LBP)和灰度共生矩阵(GLCM)的纹理特征提取方法。利用旋转不变的LBP算子处理纹理图像,得到LBP图像及其GLCM,采用对比度、相关性、能量和逆差矩描述图像的纹理特征。实验结果表明,与其他方法相比,该方法提取的纹理特征具有更强的纹理鉴别能力,平均分类正确率达到93%。 In order to extract effective features for texture description and classification,this paper proposes a texture feature extraction method fused with Local Binary Pattern(LBP) and Gray-level Co-occurrence Matrix(GLCM).The texture image is processed by rotation invariant LBP operator.The LBP image is obtained and its GLCMs are calculated.Contrast,correlation,energy and inverse difference moment are imposed for texture description.Experimental results show that,compared with other methods,the proposed method is more effective in texture feature extraction and the average classification accuracy reaches to 93%.
出处 《计算机工程》 CAS CSCD 2012年第11期199-201,共3页 Computer Engineering
基金 国家自然科学基金资助项目(50705097) 清华大学摩擦学国家重点实验室开放基金资助项目(SKLTKF09B06)
关键词 纹理分析 特征提取 Haralick特征 GABOR滤波器 局部二进制模式 灰度共生矩阵 texture analysis feature extraction Haralick feature Gabor filter Local Binary Pattern(LBP) Gray-level Co-occurrence Matrix(GLCM)
  • 相关文献

参考文献6

  • 1Ojala T, Pietikainen M, Harwood D. A Comparative Study of Texture Measures with Classification Based on Feature Distribution[J]. Pattern Recognition, 1996, 29(1): 51-59. 被引量:1
  • 2王玮,黄非非,李见为,冯海亮.采用LBP金字塔的人脸描述与识别[J].计算机辅助设计与图形学学报,2009,21(1):94-100. 被引量:48
  • 3周颖颖,周振宇,孙宁,鲍旭东.基于改进LBP特征的白细胞识别[J].生物医学工程研究,2005,24(4):242-246. 被引量:13
  • 4Baraldi A, Parmiggiani F. An Investigation of the Textual Charac- teristics Associated with Gray Level Coocurrence Matrix Statistical Parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 293-304. 被引量:1
  • 5Ojala T, Pietikainen M, Maenpaa T. Multiresolution Gray Scale and Rotation Invariant Texture Analysis with Local Binary Patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. 被引量:1
  • 6Haralick R M, Shanmugam K, Dinstein I H. Texture Features for Image Classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(6): 610-621. 被引量:1

二级参考文献33

  • 1黄丽,庄越挺,苏从勇,吴飞.基于多尺度和多方向特征的人脸超分辨率算法[J].计算机辅助设计与图形学学报,2004,16(7):953-961. 被引量:3
  • 2张大鹏.计算机图像处理技术基础[M].北京:北京大学出版社,1996.. 被引量:4
  • 3Turk M, Pentland A. Eigenfaces for recognition [J], Journal of Cognitive Neuroscience, 1991, 3(1): 71-86 被引量:1
  • 4Etenmad K, Chellappa R. Discriminant analysis for recognition of human face images [J]. Journal of the Optical Society of America, 1997, 14(8): 1724-1733 被引量:1
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherface: recognition using class special linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720 被引量:1
  • 6Yang J, Zhang D, Frangi A F, et al. Two dimensional PCA: a new approach to appearance -based face representation and recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1):131- 137 被引量:1
  • 7Brunelli R, Poggio T. Face recognition: features versus templates [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052 被引量:1
  • 8Beymer D J. Face recognition under varying pose [C] // Proceedings of Computer Vision and Pattern Recognition, Seattle, 1994:756-761 被引量:1
  • 9Nefian A V, Hayes M H. An embedded HMM-based approach for face detection and recognition [C] //Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, 1999, 6:3553-3556 被引量:1
  • 10Martinez A M. Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 748-763 被引量:1

共引文献59

同被引文献198

引证文献23

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部