期刊文献+

Single step low temperature synthesis of gadolinium gallium garnet nanopowders

Single step low temperature synthesis of gadolinium gallium garnet nanopowders
原文传递
导出
摘要 Solution combustion synthesis of single-phase gadolinium gallium oxide (Gd3GasO12, GGG) nanopowders, by a fuel mixture approach using urea and glycine at a low temperature of 500 ℃, was being reported for the first time. Based on the fact that urea and glycine are good fuels for gallium oxide and gadolinium oxide synthesis, the fuel mixture composition was obtained, which could lead to direct phase pure cubic Gd3Ga5O12 formation without any subsequent calcination step. Combustion was carried out in furnace pre-heated at 500 ℃. Thermogravimetric analysis (TGA) of combustion product showed negligible mass loss indicating direct formation of GGG powder. Fourier transform infrared (FTIR) spectrum of combusted product showed peak characteristic of GGG in case of mixed fuel. X-ray diffraction (XRD) confirmed formation of phase pure GGG at 500 ℃ in preheated furnace. Very fine, well dispersed nanometric particles of size range of 50-100 nm were obtained, being uniform and close to spherical morphology as observed by transmission electron microscope (TEM). Solution combustion synthesis of single-phase gadolinium gallium oxide (Gd3GasO12, GGG) nanopowders, by a fuel mixture approach using urea and glycine at a low temperature of 500 ℃, was being reported for the first time. Based on the fact that urea and glycine are good fuels for gallium oxide and gadolinium oxide synthesis, the fuel mixture composition was obtained, which could lead to direct phase pure cubic Gd3Ga5O12 formation without any subsequent calcination step. Combustion was carried out in furnace pre-heated at 500 ℃. Thermogravimetric analysis (TGA) of combustion product showed negligible mass loss indicating direct formation of GGG powder. Fourier transform infrared (FTIR) spectrum of combusted product showed peak characteristic of GGG in case of mixed fuel. X-ray diffraction (XRD) confirmed formation of phase pure GGG at 500 ℃ in preheated furnace. Very fine, well dispersed nanometric particles of size range of 50-100 nm were obtained, being uniform and close to spherical morphology as observed by transmission electron microscope (TEM).
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第6期545-547,共3页 稀土学报(英文版)
关键词 direct synthesis solution combustion GGG mixed fuel calcinations free rare earths direct synthesis solution combustion GGG mixed fuel calcinations free rare earths
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部