期刊文献+

一种基于空间一致性降元的高光谱图像非监督分类 被引量:6

An Unsupervised Classification of Hyperspectral Images Based on Pixels Reduction with Spatial Coherence Property
下载PDF
导出
摘要 为了提高分类精度和边缘辨识性,该文引入图像空间一致性降元(pixels reduction with spatialcoherence property,PRSCP)及线性回归分析,提出了一种基于空间一致性降元的非监督分类。该方法从像元光谱相似性出发,利用像元最小关联窗口合并相邻相似像元为像块完成降元。使用线性关系建模像块内像元的光谱向量,并利用F检验判断像块数据的线性显著性。利用一元线性回归(one dimensional linear regression,ODLR)估计出像块的基准向量,根据基准向量合并相似(同类)像块完成分类。利用AVIRIS数据评估了该方法性能,实验结果表明:与K-MEANS和ISODATA方法相比,该方法精度高、边缘辨识度好及鲁棒性强。 In order to improve classification and edge accuracy, PRSCP and linear regression analysis are introduced; a new algo rithm of unsupervised classification based on PRSCP is proposed. The algorithm procedure starts with the similarity of pixel spectral, and then makes use of minimum related window to combine similar pixels spatially adjacent into a block. Linear cxpres sion is applied to model the spectral vector of pixels in the same block, and significance of the linear expression is verified by F- statistic. The basic vector of block is estimated v/a ODLR, and blocks with similar basic vectors are combined into the same class. AVIRIS data is used to evaluate the performance of the proposed algorithm, which is also compared with K MEANS and ISODATA. Experimental results show that the proposed algorithm outperforms K-MEANS and 1SODATA in terms of classifi- cation accuracy, edge and robustness.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第7期1860-1864,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(61071147)资助
关键词 降元 空间一致性 一元线性回归 非监督分类 高光谱图像 Pixels reduction Spatial coherence property One dimensional linear regression(ODLR)~ Unsupervised c[assifica-tiom Hyperspectral images
  • 相关文献

参考文献10

  • 1Hung ChihCheng, Kulkarni Sameer, Kuo Bor-Chen IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3) : 543. 被引量:1
  • 2贾建华,焦李成.空间一致性约束谱聚类算法用于图像分割[J].红外与毫米波学报,2010,29(1):69-74. 被引量:19
  • 3Paoli A, Melgani F, Pasolli E. IEEE Geoscience and Remote Sensing Society, 2009, 47(12):4175. 被引量:1
  • 4Sweet J N. IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data. Piscataway NJ : IEEE Press, 2003. 92. 被引量:1
  • 5Lee Sanghoon, Crawford M M. IEEE Transactions on Image Processing, 2005, 14(3): 312. 被引量:1
  • 6Jimenez L O, Rivera-Medina J L, Rodriguez-Diaz E, et al. IEEE Geoscience and Remote Sensing Society, 2005, 43(4) : 844. 被引量:1
  • 7Rand R S, Keenan D M. IEEE Geoscience and Remote Sensing Society, 2003, 41(6) : 1479. 被引量:1
  • 8Jia Sen, Qian Yun-tao. Joint IAPR International Workshop on Statistical Techniques in Pattern Recognition (SPR). Hong Kong China SPR, 2006. 531. 被引量:1
  • 9SONG Feng-hua(宋丰华).Modern Space Optoelectronic Information Processing Technology and Application(现代空间光电信息处理巳技术及应用).Beijing:National Defense Industry Press(北京:国防工业出版社),2004.99. 被引量:1
  • 10Tarabalka Y, Benediktsson J A, Chanussot J, et al. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11).. 4122. 被引量:1

二级参考文献12

  • 1陶文兵,金海.基于均值漂移滤波及谱分类的海面舰船红外目标分割[J].红外与毫米波学报,2007,26(1):61-64. 被引量:10
  • 2Duda R O, Hart P E, Stork D G. Pattern classification [ M]. New York: A Wiley-Interscience Publication 2000. 被引量:1
  • 3Wang S, Siskind J M. Image segmentation with ratio cut [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 6 ) : 675-690. 被引量:1
  • 4Shi J, Malik J. Normalized cuts and image segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) : 888--905. 被引量:1
  • 5Ding C H Q, He X, Zha H, et al. A min-max cut algorithm for graph partitioning and data clustering [ A ]. IEEE International Conference on Data Mining,2001 : 107--114. 被引量:1
  • 6Ng A Y, Jordan M I, Weiss Y. On spectral clustering: analysis and an algorithm [ A ]. Neural Information Processing System,2002,14:849--856. 被引量:1
  • 7Cao L, Li Fei-Fei. Spatially coherent latent topic model for concurrent object segmentation and classification [ A ]. IEEE International Conference on Computer Vision, 2007: 1-8. 被引量:1
  • 8Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part B,2004,34(4) :1907-1916. 被引量:1
  • 9Dhillon I S, Guan Y, Kulis B. Weighted graph cuts without eigenvectors: a multilevel approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligeace,2007,29 (11) :1944-1957. 被引量:1
  • 10Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the Nystrom method [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2) :214- 225. 被引量:1

共引文献18

同被引文献44

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部