期刊文献+

Inviscid Limit for Scalar Viscous Conservation Laws in Presence of Strong Shocks and Boundary Layers

Inviscid Limit for Scalar Viscous Conservation Laws in Presence of Strong Shocks and Boundary Layers
原文传递
导出
摘要 In this paper, we study the inviscid limit problem for the scalar viscous conservation laws on half plane. We prove that if the solution of the corresponding inviscid equation on half plane is piecewise smooth with a single shock satisfying the entropy condition, then there exist solutions to the viscous conservation laws which converge to the inviscid solution away from the shock discontinuity and the boundary at a rate of ε1 as the viscosity ε tends to zero.
作者 MA Shixiang
出处 《Journal of Partial Differential Equations》 2012年第2期171-186,共16页 偏微分方程(英文版)
基金 Acknowledgments The author is supported by Tianyuan Foundation (No. 11026093) and the National Natural Science Foundation of China (Nos. 11101162, 11071086).
  • 相关文献

参考文献13

  • 1Goodman J. and Xin Z.-P., Viscous limits for piecewise smooth solutions to systems of con- servation laws. Arch. Rational Mech. Anal., 121 (3) (1992), 235-265. 被引量:1
  • 2Grenier E. and Gu6s O., Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations, 143 (1) (1998), 110-146. 被引量:1
  • 3Hoff D. and Liu T.-P., The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data. Indiana Univ. Math. J., 38 (4) (1989), 861-915. 被引量:1
  • 4Liu J.-G. and Xin Z.-P., Kinetic and viscous boundary layers for Broadwell equations. Pro- ceedings of the Second International Workshop on Nonlinear Kinetic Theories and Mathe- matical Aspects of Hyperbolic Systems (Sanremo, 1994), Transport Theory Statist. Phys., 25 (3-5) (1996), 447-461. 被引量:1
  • 5Wang H., Viscous limits for piecewise smooth solutions of the p-system. J. Math. Anal. Appl., 299 (2) (2004), 411-432. 被引量:1
  • 6Xin Z.-P., Viscous boundary layers and their stability (I). J. Partial Differential Equations, 11 (2) (1998), 97-124. 被引量:1
  • 7Xin Z.-P. and Yanagisawa T., Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane. Comm. Pure Appl. Math., 52 (4) (1999), 479-541. 被引量:1
  • 8Yu S.-H., Zero-dissipation limit of solutions with shocks for systems of hyperbolic conserva- tion laws. Arch. Ration. Mech. Anal., 146 (4) (1999), 275-370. 被引量:1
  • 9Lax P. D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. 被引量:1
  • 10Fife E C., Dynamics of Internal Layers and Diffusive Interfaces. CBMS-NSF Regional Con- ference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 53, 1988. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部