期刊文献+

基于σ坐标变换下的Navier-Stokes方程数值模拟 被引量:2

Numerical Simulation of Incompressible Navier-Stokes Equations with σ Coordinate Transformations
下载PDF
导出
摘要 研究了在二维水槽带非线性自由面边界条件的Navier-Stokes方程的数值解.通过σ坐标变换对不规则的水槽液体区域变换为一个规则的正方形区域,运用交错网格技术,采用较为稳定的Crank-Nicolson格式,建立流场变量的耦合迭代的算法,求解了粘性不可压缩的Navier-Stokes方程的数值解.数值模拟了水平激励和垂直激励下的自由面波高的值.数值结果表明,与无粘的Euler方程的数值解比较,粘性效果造成的自由面波的衰减非常明显. A numerical solution algorithm of Navier-Stokes equation with nonlinear free Surface boundary condition is developed. A finite difference method is developed and is applied to solve Navier-Stokes equation in a two dimensional tank. A staggered mesh system is employed and a a coordinate transformation is applied. A Crank-Nicolson scheme is applied to discretize the nonlinear dynamic boundary condition and nonlinear kinematic boundary condition. The Crank-Nicolson method is an unconditionally stable and implicit numerical scheme with second-order accuracy in both time and space. In the final, the numerical solutions are presented and agree well with the analytic solution and previously published results.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期55-61,共7页 Acta Scientiarum Naturalium Universitatis Nankaiensis
关键词 NAVIER-STOKES方程 有限差分方法 交错网格 CRANK-NICOLSON格式 耦合迭代方法 Navier-Stokes equations finite difference method staggered grid Crank-Nicolson scheme nested iterative method
  • 相关文献

参考文献17

  • 1Faltinsen O M. A numerical nonlinear method of sloshing in tanks with two dimensional fow[J]. J Ship Res, 1978, 18: 224--241. 被引量:1
  • 2Faltinsen O M, Timokha A N. Asymptotic model approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth[J. J Fluid Mech, 2002, 470: 319--357. 被引量:1
  • 3Frandsen J B. Sloshing motions in excited tanks[-J. J Computat Phys, 2004, 196: 53--87. 被引量:1
  • 4Frandsen J B. Numerical bridge deck studies using finite elements. Part I: Ftutter[J. J Fluid Struct, 2004: 171-- 191. 被引量:1
  • 5Wu G X, Eatock Taylor R. The coupled inite element and boundary element analysis of nonlinear interactions be tween waves and bodiesJ]. Ocean Eng, 2003, 30.. 387--400. 被引量:1
  • 6Nakayama T, Washizu K. The boundary element method applied to the analysis of two dimensional nonlinear slosh ingproblems[J. Int J Numer Meth Eng, 1981, 17:1 631--1 646. 被引量:1
  • 7Nakayama T, Washizu K. Reduced order modeling of liquid sloshing in 3D tanks using boundary element methodEJ. Eng Anal Bound Elem, 2009, 33.. 750--761. 被引量:1
  • 8Kami/ski M. Potential problems with random parameters by the generalized perturbation-based stochastic finite ele- ment method[-J. Comput -Struct, 2010, 88: 437--445. 被引量:1
  • 9Lu L, Cheng L, Teng B, et al. Numerical simulation and comparison of potential flow and viscous fluid models in near trapping of narrow gaps[J]. J Hydr: Ser B, 2010, 22: 120--125. 被引量:1
  • 10Chen B F. Nonlinear hydrodynamic pressures by earthquakes on dam faces with arbitrary reservoir shapesEJ]. J Hy- dr Res, 1994, 32 401--413. 被引量:1

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部