期刊文献+

具有整数值伸缩矩阵的三维紧框架小波的存在性

Existence of Trivariate Tight Framelets Associated with Integer-valued Dilation Matrix
原文传递
导出
摘要 引进了三维紧框架小波的概念,它是由框架多分辨分析中子空间X1中的若干个三维函数Г^1(y),Г^2(y),…,Г^n(y)构成的.研究了对应于三维尺度函数的三维紧框架小波的存在性.运用时频分析方法、滤波器理论、算子理论,给出这n个三维函数生成小波紧框架的充分条件,得到了由一个尺度函数ψ(y)构造三维紧框架小波的显式公式. The notion of trivariate tight framelets is introduced. It is constituted from some ternary functions Г^1(y), Г^2(y),…, Г^s(y) belonging to subspace X1 of frame multiresolution analysis. Existence of trivariate tight framelets according to a trivariate scaling function is investigated. A sufficient condition for the existence of trivariate wavelet tight frames generated from those functions is presented by virtue of time-frequency analysis method, filter theory, operator theory. An explicit construction formula of trivariate tight framelets is established from a trivariate scaling function ψ(y).
出处 《数学的实践与认识》 CSCD 北大核心 2012年第11期191-197,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(10571113) 陕西省教育厅专项科研计划(11JK0468)
关键词 三维紧框架小波 框架多分辨分析 时频分析方法 矩阵伸缩 投影算子 逼近论方法 Trivariate tight framelets frame multiresolution analysis time-frequency analysis method dilation matrix projection operator approximation theory method
  • 相关文献

参考文献10

二级参考文献25

  • 1陈清江,程正兴,冯晓霞.高维多重双正交小波包[J].应用数学,2005,18(3):358-364. 被引量:21
  • 2陈清江,冯金顺,程正兴.关于多重向量值正交小波的存在性[J].江西师范大学学报(自然科学版),2006,30(5):431-435. 被引量:6
  • 3陈清江,张同琦,程正兴,李学志.一类多重向量值双正交小波包的刻划[J].云南大学学报(自然科学版),2006,28(6):472-477. 被引量:7
  • 4[1]Donovan G C,Geronimo J,Hardin D P.Construction of orthogonal wavelets using fractal interpolation functions [J].SIAM J Math Anal,1996,27:1 158~1 192. 被引量:1
  • 5[2]Lawton W,Lee S L,Shen Z W.An algorithm for matrix extension and wavelet construction[J].Math Comp,1996,65:723~737. 被引量:1
  • 6[3]Strang G,Strela V.Short wavelets and matrix dilation equations[J].IEEE Trans Signal Process,1995,43:108~115. 被引量:1
  • 7[4]Hardin D P,Marasovich J A.Orthogonal multiwavelets on [-1,1][J].Appl Comp Harm Anal,1999,7:34~53. 被引量:1
  • 8Benedetto J J, Li S. The theory of multiresolution analysis frames and application to filter banks. Appl Comp Harm Anal, 1998, 5: 398-427 被引量:1
  • 9Alexander P. Explicit construction of framelets. Appl Comp Harm Anal, 2001, 11:313-327 被引量:1
  • 10Chui C K, He W J. Compactly supported tight frames associated with refinables functions. Appl Comp Harm Anal, 2000, 8: 293-319 被引量:1

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部