摘要
引进了三维紧框架小波的概念,它是由框架多分辨分析中子空间X1中的若干个三维函数Г^1(y),Г^2(y),…,Г^n(y)构成的.研究了对应于三维尺度函数的三维紧框架小波的存在性.运用时频分析方法、滤波器理论、算子理论,给出这n个三维函数生成小波紧框架的充分条件,得到了由一个尺度函数ψ(y)构造三维紧框架小波的显式公式.
The notion of trivariate tight framelets is introduced. It is constituted from some ternary functions Г^1(y), Г^2(y),…, Г^s(y) belonging to subspace X1 of frame multiresolution analysis. Existence of trivariate tight framelets according to a trivariate scaling function is investigated. A sufficient condition for the existence of trivariate wavelet tight frames generated from those functions is presented by virtue of time-frequency analysis method, filter theory, operator theory. An explicit construction formula of trivariate tight framelets is established from a trivariate scaling function ψ(y).
出处
《数学的实践与认识》
CSCD
北大核心
2012年第11期191-197,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(10571113)
陕西省教育厅专项科研计划(11JK0468)
关键词
三维紧框架小波
框架多分辨分析
时频分析方法
矩阵伸缩
投影算子
逼近论方法
Trivariate tight framelets
frame multiresolution analysis
time-frequency analysis method
dilation matrix
projection operator
approximation theory method