期刊文献+

形状记忆合金梁的建模及混沌阈值计算 被引量:3

Modeling and chaotic motion calculation of a shape memory alloy beam
下载PDF
导出
摘要 从形状记忆合金(SMA)的等应变拉压实验数据出发,利用van-der-pol环模型模拟了形状记忆合金在加载和卸载过程中的应力应变迟滞环特性。并根据弹性理论和Galerkin方法建立了形状记忆合金简支梁在受轴向激励时的振动模型。随后得出了自由振动系统的分岔特性。在利用待定固有频率法研究了模型的非线性参数对系统固有频率的影响后,根据待定固有频率法的计算结果和时间尺度变化提出了系统Melnikov函数的改进表达式,提高了计算形状记忆合金梁模型在参数激励下发生混沌的阈值的精度。数值模拟的结果证明了该途径的有效性。 Van-der-pol hysteretic cycle was used to describe hysteretic nonlinear characteristic of strain-stress relation of a shape memory alloy(SMA)based on experimental data.A dynamical model with nonlinear damping for a simply supported SMA beam subject to axial excitation was proposed based on elastic theory and Galerkin’s approach.At first,the local bifurcations of the free vibration system were analyzed with the normal form theory.And the global bifurcation was studied with Melnikov approach.Secondly,the undermined natural frequency and normal form methods were utilized to study the influence of the disturbing parameters on the natural frequency.Finally,the improved Melnikov expression for the oscillator was built based on the results of the undermined natural frequency method and time scale transformation to obtain the approximate threshold value of chaotic motion with the homoclinical points of view.The numerical results showed the effectiveness of the theoretical analysis.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第12期103-107,119,共6页 Journal of Vibration and Shock
基金 国家自然科学基金重点资助项目(10732020)
关键词 形状记忆合金(SMA) 待定固有频率法 MELNIKOV方法 混沌 SMA beam homoclinical bifurcation improved Melnikov method chaos
  • 相关文献

参考文献15

  • 1Tanaka K. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior [ J]. Res Mechanics, 1986,18 : 251 -263. 被引量:1
  • 2Liang C, Rogers C A. A one-dimensional thermo-mechanical constitutive relation of shape memory materials[J]. Journal of Intelligent Material System Structure, 1990,1 : 207 - 234. 被引量:1
  • 3Boyd J G, Lagoudas D C. A thermodynamical constitutive model for shape memory materials [ J ]. International Journal of P1 asticity, 1996,12 : 805 - 873. 被引量:1
  • 4Brinson L C. One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with nonconstant material functions and redefined martensite internal variable [J]. Journal of Intelligent Material Systems and Structures, 1993,4:229 - 242. 被引量:1
  • 5Graesser E J, Cozzarelli F A. A proposed three-dimensional constitutive model for shape memory alloys [ J ]. Journal of Intelligent Material Systems and Structures, 1994, 14:78 - 89. 被引量:1
  • 6Ivshin Y, Pence T J. Thermomechanical model for a one variant shape memory material [ J ]. Journal of Intelligent Material Systems and Structures, 1994,5: 455 -473. 被引量:1
  • 7Auricchio F, Lubliner J. Uniaxial model for shape-memory alloys [ J ]. International Journal of Solids and Structures, 1997,34 : 3601 - 3618. 被引量:1
  • 8Collet M, Fohete E, Iexcellent C. Analysis of the behavior of a shape memory alloy beam under dynamical loading [ J ]. European Journal Mechanics, A-Solids,2001,20 : 615 - 630. 被引量:1
  • 9Hashemi S M T, Khadem S E. Modeling and analysis of the vibration behavior of a shape memory alloy beam [J]. International Journal of Mechanical Sciences, 2006,48 ( 1 ) : 44 -52. 被引量:1
  • 10Savi M A, Pacheeo P M, Braga M B. Chaos in shape memory two-bar truss [ J ]. International Journal of Non-Linear Mechanics ,2002,37( 1 ) : 1387 - 1395. 被引量:1

二级参考文献27

共引文献11

同被引文献16

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部