期刊文献+

微阵列数据揭示基因在癌样本中广泛表达

Revealing extensive up-regulation of gene expression in pancreatic cancer based on microarray data
下载PDF
导出
摘要 癌的发生与发展过程涉及大量基因的异常表达。在目前基因表达谱分析中采用的标准化方法通常假设在疾病中差异表达的基因的比例很小并且差异上、下调的比例大致相等。这个被研究者所广泛采用的标准化的前提假设尚未被充分地论证过。通过分析胰腺癌的两套表达谱数据,我们发现在胰腺癌样本中基因表达的中值显著高于正常样本,提示传统的标准化假设并不适用于胰腺癌表达谱数据。采用标准化数据会导致错误地判断大量的差异下调的基因并失查许多差异上调的基因。采用原始数据分析发现在胰腺癌中的基因表达有广泛上调的特征,为深入研究胰腺癌的发生和发展机制提供了新线索。 The gene expression data are subject to multiple sources of technical artifacts due to experimental differences in sample preparation, array processing and others. Hence, data normalization is supposed to adjust the global properties of measurements of individual samples so that they can be "more appropriately compared". Based on the assumption that only a few genes are differentially expressed in a disease and have balanced upward and downward expression level changes, researchers usually normalize microarray data by forcing all of the arrays to have the same probe intensity distributions to remove technical variations in the data. However, accumulated evidences sug- gest gene expressions could be widely altered in cancer, so we need to evaluate the sensitivities of biological discoveries to violation of the normalization assumption. In this study, by analyzing two expression profiles of pancreatic cancer, we showed that the distribution of gene expression in cancer samples are significantly different from that in normal samples, indicating that the assumption of current normalization is unreliable for pancreatic cancer. Our results showed that using normalized data may falsely produce many down - regulated differential expressed genes while missing many up - regulated differential expressed genes in pancreatic cancer. Furthermore, using the raw intensities for analysis, we found extensive up - regulation of gene expression in pancreatic cancer, which provieds important hints for studying the mechnism of pancreatic cancer.
出处 《生物信息学》 2012年第2期136-140,共5页 Chinese Journal of Bioinformatics
基金 黑龙江省教育厅科学技术研究项目(编号:11541156)
关键词 胰腺癌 微阵列 标准化 差异表达 生物学通路 pancreatic cancer microarray normalization differentially expression biological pathway
  • 相关文献

参考文献27

  • 1Ein - Dor L, Kela I, Getz G, Givol D, Domany E. Outcome signa- ture genes in breast cancer: is there a unique set? [ J]. Bioinfor- matics, 2005, 21 (2) :171 - 178. 被引量:1
  • 2Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a muhiple random validation strategy [ J ]. Lancet, 2005, 365 (9458) :488 - 492. 被引量:1
  • 3任丽萍,章琳,洪贵妮,郭政.基于蛋白质互作评价差异表达基因的重复性[J].生物信息学,2011,9(3):181-184. 被引量:2
  • 4Zhang M, Zhang L, Zou J, Yao C, Xiao H, Liu Q, Wang J, Wang D, Wang C, Guo Z. Evaluating reproducibility of differential expres- sion discoveries in microarray studies by considering correlated mo- lecular changes[ J]. Bioinformatics, 2009, 25 ( 13 ) : 1662 - 1668. 被引量:1
  • 5姚晨,李红东,郭政.肾细胞癌DNA甲基化标记检测的重复性及其与基因表达改变的相关性[J].生物信息学,2011,9(2):102-105. 被引量:1
  • 6Quackenbush J. Microarray data normalization and transformation [J]. Nat Genet, 2002, 32 Suppl:496-501. 被引量:1
  • 7Irizarry RA, Hobbs B, Collin F, Beazer - Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, nmTnalization, and summa- ries of high density oligonucleotide array probe level data[ J]. Bio- statistics, 2003, 4 (2) :249 - 264. 被引量:1
  • 8Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C,Kim IF, Soboleva A, Tomashevsky M, Edgar R. NCBI GEO: mining tens of millions of expression profiles - - database and tools update [ J ]. Nucleic Acids Res, 2007, 35 ( Database issue) : D760 - 765. 被引量:1
  • 9Naef F, Hacker CR,Patil N, Magnasco M. Empirical characteriza- tion of the expression ratio noise structure in high - density oligonu- cleotide arrays [ J ]. Genome Biol, 2002, 3 (4) : RESEARCH0018. 被引量:1
  • 10Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA. Tackling the widespread and critical impact of batch effects in high- throughput data[ J]. Nat Rev Genet, 2010, ll(10) :733 -739. 被引量:1

二级参考文献44

  • 1Ein - Dor L, Kela I, Getz G, Givol D, Domany E : Outcome sig- nature genes in breast cancer: is there a unique set? [ J]. Bioinfor- matics,2005,21 (2) :171 - 178. 被引量:1
  • 2Michiels S, Koscielny S, Hill C: Prediction of cancer outcome with microarrays: a multiple random validation strategy[ J]. Lan- cet,2005, 365(9458) :488 -492. 被引量:1
  • 3Ein - Dor L, Zuk O, Domany E : Thousands of samples are nee- ded to generate a robust gene list for predicting outcome in cancer [J]. Proc Natl Acad Sci U S A,2006, 103(15) :5923 -5928. 被引量:1
  • 4Zhang M, Yao C, Guo Z, Zou J, Zhang L, Xiao H, Wang D, Yang D, Gong X, Zhu J et al: Apparently low reproducibility of true differential expression discoveries in microarray studies [ J ]. Bioinformatics ,2008, 24 ( 18 ) :2057 - 2063. 被引量:1
  • 5Shen R, Chinnaiyan AM, Ghosh D: Pathway analysis reveals functional convergence of gene expression profiles in breast cancer [ J]. BMC Med Genomics,2008, 1:28. 被引量:1
  • 6Ge H, Liu Z, Church GM, Vidal M: Correlation between tran- scriptome and interactome mapping data from Saccharomyces cere- visiae [ J ]. Nat Genet,2001, 29 (4) :482 - 486. 被引量:1
  • 7Lin N, Wu B, Jansen R, Gerstein M, Zhao H: Information as- sessment on predicting protein - protein interactions [ J ]. BMC Bioinformatics ,2004, 5 : 154. 被引量:1
  • 8Bowen NJ, Walker LD, Matyunina LV, Logani S, Totten KA, Benigno BB, McDonald JF : Gene expression profiling supports the hypothesis that human ovarian surface epithelia are muhipotent and capable of serving as ovarian cancer initiating cells[J]. BMC Med Genomics,2009, 2:71. 被引量:1
  • 9Mok SC, Bonome T, Vathipadiekal V, Bell A, Johnson ME, Wong KK, Park DC, Hao K, Yip DK, Donninger Het al: A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril - associated glycoprotein2 [J]. Cancer Cell,2009, 16(6) :521 -532. 被引量:1
  • 10Zanzoni A, Montecchi - Palazzi L, Quondam M, Ausiello G, Helmer - Citterich M, Cesareni G : MINT : a Molecular INTerac- tion database[J]. FEBS Lett,2002, 513( 1 ) :135 - 140. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部