期刊文献+

基于双排矩形梳状慢波结构的W波段宽频带行波管模拟研究 被引量:6

Simulation studies on W-band traveling-wave tube with double rectangular comb slow-wave structure
原文传递
导出
摘要 提出采用圆形电子注和双排矩形梳状慢波结构作为W波段宽频带行波管注波互作用回路.对该慢波回路的"冷"态特性、输入输出结构等方面进行了模拟仿真和分析,研究结果表明,该结构色散特性较好,带宽较宽;通过调整双排矩形梳状慢波结构之间的距离和电子注通道半径的尺寸,圆形电子注系统取得了和带状注系统相同的耦合阻抗;且该结构传输特性较好,优化后整管的驻波比能在较宽的频带内保持在2以下.此外,对该慢波系统的大信号理论计算和PIC粒子模拟结果一致.在50 mW驱动功率下,输出功率在10 GHz带宽内大于40 W,增益高于29 dB. A double rectangular comb slow-wave structure with a round beam channel is proposed as the slow-wave structure (SWS) circuit of a broad bandwidth traveling-wave tube at W-band. The "cold" characteristic of the SWS and the transmission of the input/output structure are simulated and optimized in this paper. The results show that this circuit has a very broad bandwidth, and that the impedance of the structure with round beam channel can be the same as that of sheet beam by modifying the distance between the double vanes and the radius of the beam channel. Moreover, the transmission of the whole tube is so good that the VSWR can be kept at below 2 in a very broad bandwidth after optimization. The output performance is investigated by both the big signal theory MTSS and the PIC code MAFIA, and they have the same results that in 10 GHz bandwidth the output power is over 40 W and the gain is above 29 dB under a driven power of 50 mW.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第12期196-202,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61172016)资助的课题~~
关键词 双排矩形梳状慢波结构 W波段 宽频带 行波管 double rectangular comb slow-wave structure, W band, broad bandwidth, traveling-wave tube
  • 相关文献

参考文献1

二级参考文献13

  • 1高鹏,杨中海,李斌,李建清,胡玉禄,朱小芳,廖莉.螺旋线行波管1维多频非线性理论与模拟[J].强激光与粒子束,2007,19(3):459-462. 被引量:7
  • 2Booske J H 2008 Phys. Plasmas 15 055502. 被引量:1
  • 3Barker R J, Booske J H, Luhmann N C Jr, Nusinovich G S 2005 Modern Microwave and Millimeter-Wave Power Electronics ( New York: Wiley/IEEE). 被引量:1
  • 4Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685. 被引量:1
  • 5Kreischer K E, Tucek J C, Gallagher D A, Mihailovlch R E 2008 IEEE International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics (Piscataway: IEEE) p1. 被引量:1
  • 6Marchewka C, Larsen P, Bhattacharjee S, Booske J H, Sengele S, Ryskin N M, Titov V N 2006 Phys. Plasmas 13 013104. 被引量:1
  • 7Bhattacharjee S, Booske J H, Kory C L, van der Weide D W,Limbach S, Gallagher S, Welter J D, Lopez M R, Gilgenbach R M, Ives R L, Read M E, Divan R, Mancini D C 2004 1EEE Trans. Plasma Sci. 32 1002. 被引量:1
  • 8Antonsen T M Jr, Manheimer W M 1998 IEEE Trans. Plasma Sci. 26 444. 被引量:1
  • 9Mallinson J C 2004 1EEE Trans. Magn. 40 3407. 被引量:1
  • 10Gao P, Booske J H, Yang Z H 2010 IEEE International Vacuum Electronics Conference ( Piscataway : IEEE) pp321--322. 被引量:1

共引文献6

同被引文献11

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部