期刊文献+

基于条件随机域的中文事件类型识别 被引量:8

Chinese Event Type Recognition Based on Conditional Random Fields
原文传递
导出
摘要 传统的分步骤事件抽取方法中,事件元素识别的结果无法指导事件类型识别,而事件类型识别的效果在很大程度上决定了事件抽取系统的整体性能.文中为解决事件类型识别对元素识别的后向依赖问题,将事件抽取看作序列标注,构建一个改进的条件随机域联合标注模型,将事件类型和事件元素在图模型中同时进行标注.同时,通过触发词嵌入试图解决事件抽取中的数据不平衡问题.ACE2005中文语料上的实验表明,基于该模型的方法提高了事件类型识别的性能,最终F值达到63.53%. The result of event argument recognition cannot guide event type recognition in the traditional multi - step event extraction methods. Nevertheless the performance of event extraction system largely depends on event type recognition. In order to address the backward dependency of event type recognition on event argument recognition, event extraction is considered as a sequence labeling. In this paper, an improved conditional random field joint labeling model is proposed. The event type and event argument are labelled simultaneously in the graph model. The solution of the unbalanced data problem is discussed through embedding trigger word. The experiments on ACE 2005 Chinese corpus show that the performance of event type recognition is improved by the proposed method and F-score achieves 63.53%.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第3期445-449,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61100123) 教育部博士点基金项目(No.20110032120040) 天津市科技支撑计划重点项目(No.08ZCKFGX0180)资助
关键词 事件抽取 事件类型识别 条件随机域 Event Extraction, Event Type Recognition, Conditional Random Fields
  • 相关文献

参考文献6

  • 1李保利,陈玉忠,俞士汶.信息抽取研究综述[J].计算机工程与应用,2003,39(10):1-5. 被引量:178
  • 2梁晗,陈群秀,吴平博.基于事件框架的信息抽取系统[J].中文信息学报,2006,20(2):40-46. 被引量:38
  • 3Ahn D. The Stages of Event Extraction//Proc of the COLING-ACL Workshop on Annotating and Reasoning about Time and Events. Sydney, Australia, 2006 : 1 - 8. 被引量:1
  • 4赵妍妍,秦兵,车万翔,刘挺.中文事件抽取技术研究[J].中文信息学报,2008,22(1):3-8. 被引量:105
  • 5Zheng Chen, Heng Ji. Language Specific Issue and Feature Explora- tion in Chinese Event Extraction// Proc of the Annual Conference of the North American Chapter of the Association for Computational Linguistics. Colorado, USA, 2009 : 209 - 212. 被引量:1
  • 6Lafferty .l D, McCallum A, Pereira F C N. Conditional Random Fields: Prohabilistic Models for Segmenting and Labeling Sequence Data // Proc of the 18th International Conference on Machine Learning. Williamstown, USA, 2001 : 282 - 289. 被引量:1

二级参考文献37

  • 1[16]Hobbs J,Appelt D,Bear J et al.FASTUS:A Cascaded Finite-State Transducer for Extracting Information from Natural-Language Text[C].In:Roche,Schabes eds. Finite State Devices for Natural Language Processing, MIT Press,Cambridge MA, 1996 被引量:1
  • 2[17]Appelt D E.Introduction to Information Extraction[J].AI COMMUNICATIONS, 1999; 12(3) 被引量:1
  • 3[18]Yangarber R.Scenario Customization for Information Extraction[D].Ph D Thesis.New York University,2001-01 被引量:1
  • 4[19]Cowie J, Lehnert W.Information Extraction[J].Communications of the ACM, 1996;39(1) 被引量:1
  • 5[20]Grishman R Adaptive information extraction and sublangu age analysis[C].In:Proceedings of IJCAI-2001 Workshop on Adaptive Text Extraction and Mining,2001 被引量:1
  • 6[1]Applet D E,Israel D J.Introduction to Information Extraction Technology. A Tutorial for IJCAI-99,1999 被引量:1
  • 7[2]Gaizauskas R,Wilks Y.Information Extraction:Beyond Document Retrieval[J].Journal of Documentation, 1997 被引量:1
  • 8[3]Sager N.Natural Language Information Processing. Reading,Massachusetts:Addison Wesley, 1981 被引量:1
  • 9[4]Dejong G.An Overview of the FRUMP System[C].In:LEHNERT W,RINGLE M h eds. Strategies for Natural Language Processing,Lawrence Erlbaum, 1982:149~176 被引量:1
  • 10[5]Grishman R,Sundheim B.Message Understanding Conference-6:A Brief History[C].In :Proceedings of the 16h International Conference on Computational Linguistics(COLING-96),1996-08 被引量:1

共引文献295

同被引文献122

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部