期刊文献+

梯度塑性理论的计算方法与应用 被引量:5

Application of gradient plastic theory based on FEPG platform
下载PDF
导出
摘要 基于有限元自动生成系统(FEPG),开发使用梯度塑性理论的有限元程序,用于解决应变软化后的网格依赖性问题。提出带阻尼因子的u-λ算法,联立求解位移方程和屈服面方程,既可同时解得位移和塑性乘子,又避免了广泛使用的应力返回算法中的应力拉回运算。在D-P准则中引入软化模量和材料内部特征长度,使本构模型能够考虑软化和梯度效应。在软化问题求解上使用阻尼牛顿法,算例结果表明,带阻尼因子的u-λ算法能够计算应变软化问题,以有限元弱形式表达的梯度塑性理论,使用一阶单元就能够得到合理的结果,在一定网格范围能够得到稳定的应力应变曲线。 Based on the FEPG platform, the finite element program using gradient plastic theory is developed to solve mesh dependence after strain softening. A μ-λ algorithm with damp factor is proposed, which can solve the equation of displacement and yield surface simultaneously. The algorithm can not only get displacement and plastic multiplier together, but also avoid the stress haul back calculation in stress return algorithm widely used in finite element solution procedures. The softening modulus and the internal character length are introduced into D-P yield function, and the constitutive model can consider strain softening and gradient effect. The damp Newton algorithm is used to calculate softening problems. The results of a case study show that the μ-λ algorithm with damp factor can be used to solve softening problems, the gradient plastic theory described by finite element weak form has no requirement of continuity, and appropriate outcome can be obtained by the first-order element, thus the mesh dependence of simulation is basically solved.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2012年第6期1094-1101,共8页 Chinese Journal of Geotechnical Engineering
基金 国家重点基础研究发展计划(973计划)项目(2011CB013600) 教育部博士点基金项目(20101103110011) 国家高技术研究发展计划(863计划)(2009AA044501)
关键词 梯度塑性理论 u-λ算法 阻尼牛顿法 应变软化 网格依赖性 gradient plastic theory μ-λ algorithm damp Newton method strain softening mesh dependence
  • 相关文献

参考文献12

  • 1ZIENKIEWICZ 0 C, HUANG M S, PASTOR M. Localizationproblems in plasticity using finite elements with adaptive remeshing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(2): 127- 148. 被引量:1
  • 2BELYTSCHKO T, BLACK T. Elastic crack growth in finite element with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601 - 620. 被引量:1
  • 3BELYTSCHKO T, LU Y Y, GU L, Element-free Galerkin method[J]. Intemational Journal for Numerical Methods in Engineering, 1994, 37(2): 229 - 256. 被引量:1
  • 4DE BORST R, SLUYS L J. Localization in a Cosserat continuum under static and dynamic loading conditions[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 90(1): 805 - 827. 被引量:1
  • 5FLECK N A, HUTCHINSON J W. Strain gradient plasticity[J]. Advances in Applied Mechanics,1997, 33:295 - 361. 被引量:1
  • 6MUHLHAUS H B, AIFANTIS E C. A variational principle for gradient plasticity[J]. International Journal of Solids and Structures,1991, 28(7): 845 - 857. 被引量:1
  • 7宋二祥.软化材料有限元分析的一种非局部方法[J].工程力学,1995,12(4):93-101. 被引量:4
  • 8DE BORST R, PAMIN J. Some novel developments in finite element procedures for gradient-dependent plasticity[J]. Intemational Journal for Numerical Methods in Engineering, 1996, 39(14): 2477 - 2505. 被引量:1
  • 9李锡夔,S.Cescoto.梯度塑性的有限元分析及应变局部化模拟[J].力学学报,1996,28(5):575-584. 被引量:13
  • 10MANZARI M T, REGUEIRO R A. Gradient plasticity modeling of geomaterials in a meshfree environment. Part I: Theory and variational formulation[J]. Mechanics Research Communications, 2005, 32(5): 536 - 546. 被引量:1

二级参考文献10

  • 1李锡夔,Int J Numer Methods Engng,1996年,39卷,619页 被引量:1
  • 2宋二祥.软化材料有限元分析的一种非局部方法[J].工程力学,1995,12(4):93-101. 被引量:4
  • 3BELYTSCHKO T,LIU W K,MORAN B.连续体和结构的非线性有限元[M].庄茁,译.北京:清华大学出版社,2002. 被引量:25
  • 4SHI Qing-song.A micromechanical strain gradient theory for instability problems in granular materials[D].University of Massachusetts Am Herst,2003. 被引量:1
  • 5沈珠江.理论土力学[M].北京:中国水利水电出版社,2002. 被引量:5
  • 6CHEN G F,BAKER G H.Incompatible 4-node element for gradient-dependent plasticity[J].Advances in Structural Engineering,2004,7 (2):169-177. 被引量:1
  • 7HIBBITT K,SORENSEN I.ABAQUS Manualsversion 6.3[M].USA,2003. 被引量:1
  • 8SMITH I M,GRIFFITHS D V.有限元方法编程[M].王菘,等,译.北京:电子工业出版社,2003. 被引量:4
  • 9白以龙.材料的不稳定性[A].固体力学发展趋势[C].北京:北京理工大学出版社,1995. 被引量:1
  • 10RENE B D,PAMIN J.Some novel developments in finite element procedures for gradient dependent plasticity[J].International Journal for Numerical Methods in Engineering,1996,39(14):2477-2505. 被引量:1

共引文献21

同被引文献52

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部