期刊文献+

量子密码技术及应用模型 被引量:1

Quantum Cryptography and It' s Application Model
下载PDF
导出
摘要 最近取得飞速发展的量子加密技术综合了量子力学原理和经典密码术,具有可证明的安全性,同时还能对窃听者的非法侵入进行检测。本文介绍了有关的量子力学理论,针对主要的量子密钥分发协议BB84进行了说明,并在此基础上提供了具体的试验模型,最后谈论了量子密码技术需要改善的一些问题。 The quantum cryptography which has made a great deal of progress , as the result of a synthesis of ideas from fundamental quantum mechanics and classical encryption, is characterized by the provable security and detection of unauthorized eavesdropping. Previously we review the relative quantum mechanics theory, then give the overall dissertation concerning the prime Quantum Key Distribution (QKD) protocol BB84 on the basis of which the laboratory - based systems are referred. The paper presents the future developing directions of quantum cryptography finally.
出处 《通信保密》 2000年第1期4-9,,13,,共7页
关键词 量子密码 量子力学 量子密钥分发 Catch 22'problem , Heisenberg uncertainty principle, polarized light, eigen-ket , non - commuting
  • 相关文献

参考文献5

  • 1[3]Lutkenhaus N. Security against eavesdropping in quantum cryptography. Phys Rev, 1996; A 54: 97~111 被引量:1
  • 2[4]Bennett C H, Brassard G, et al. Quantum cryptography or unforgettable sobway tokens. In: Advances in Cryptology: Proceedings of Crypto’82, New York: Plenum, 1982:267~275 被引量:1
  • 3[5]Hughes R J, Luther G G, Breidbart S, et al. Quantum cryptography over underground optical fibers. In: Advances in Cryptology: Proceeding of Crypto’96,1996: 329~341 被引量:1
  • 4[6]Lomonaco J, Jr. A quick glance at quantum cryptography. Cryptologia, 1999; XXⅢ(1):1~20 被引量:1
  • 5[7]Mayers D. On the security of the quantum oblivious transfer and key distribution protocols. In: Advances in Cryptology: Proceeding of Crypto’95, Lecture Notes in Computer Science, Vol 963, Berlin: Springer-Verlag, 1995; 124~135 被引量:1

同被引文献9

  • 1[1]Richard J H.Quantum key distribution over a 48km optical fiber network[J].J Modern Optic,2000,47(02):522-531 被引量:1
  • 2[4]Marand C C.Quantum key distribution over distances as long as 30km[J].Opt Lett,2001,20(12):1 695-1 697 被引量:1
  • 3[5]Divincer D P,Shor P W,Smolin J A.Quantum-channel capacity of very noisy channels[J].Phys Rev A,2000,57(11):830-839 被引量:1
  • 4[6]Ekert A.Quantum cryptography based on Bell`s theorem[J].Phys Rev Lett,2000,67(05):2 585-2 588 被引量:1
  • 5[7]Bennett C H,Wiesner S J.Communication via one to two particle oerators on EPR states[J].Phys Rev Lett,1999,69(09):2 881-2 884 被引量:1
  • 6[8]Caniposar R A,Saleh E A,Teich M C.Quantum-mechanical lossless beam spliner[J].Phys Rev Lett,1999,40(10):1 374-1 384 被引量:1
  • 7[10]Binden H Z,Gautier P D,Gisin N.Interferometry with Faraday mirrors for quantum cryptography[J].Electr Lett,2001,33(12):586-588 被引量:1
  • 8田东平,舒远,种波.量子通信中的量子加密网络[J].西安交通大学学报,2002,36(6):643-646. 被引量:4
  • 9舒远,谈正.多用户网络环境下量子密码术[J].通信学报,2003,24(12):164-169. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部