期刊文献+

一种高速密集视频监控场景背景重构方法 被引量:2

Background Reconstruction of High Speed Dense Surveillance Scenes
下载PDF
导出
摘要 针对高速密集视频监控序列建立了一种新的简单的背景重构方法。该方法首先基于帧差序列的时空分布特性,利用高阶统计量理论,获取视频序列公共背景区域;然后根据同一背景帧差图像分布特性相似性,去除运动对于背景的干扰,形成路面背景序列值,从而获得路面背景图像;最后利用计分牌监测的自适应背景更新方法进行背景更新。实验结果表明该方法效果理想,为高速路视频背景重建和运动目标检测提供了新的方法。 A new and simple technique is proposed to reconstruct the background of high speed dense surveillance sequences. First, the public background of video sequences is extracted by using the space distribution property of a frame difference sequence and the high-order statistics theory. Then, a sequence of road background is formed by removing the background interference caused by motion according to the distribution similarity of a background frame difference image,thus getting a road background image. Finally, the background image is refreshed via an adaptive method of the scoreboard. Results demonstrate the apparent effectiveness of the scheme and it is a new method for reconstructing background and detecting motion target in high Key speed video.
出处 《数据采集与处理》 CSCD 北大核心 2012年第3期346-352,共7页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(10771022)资助项目
关键词 视频监控 背景重构 运动目标 高速密集运动 公共背景区 video surveillance background reconstruction moving target high speed dense motion common background
  • 相关文献

参考文献15

  • 1Wei Zhiqiang,Ji Xiaopeng,Wang Peng.Real-time moving object detection for video monitoring systems[J].Journal of Systems Engineering and Electronics,2006,17(4):731-736. 被引量:18
  • 2Neri A, Colonnese S, Russo G, et al. Automatic moving object and background separation[J]. Signal Processing, 1998,66(2): 219-232. 被引量:1
  • 3Meier T, Ngan K N. Automatic segmentation of moving objects for video object plane generation[J]. IEEE Trans on Circuits and Systems for Video Tech- nology, 1998,8(5) :525-538. 被引量:1
  • 4张文涛,李晓峰,李在铭.高速密集视频目标场景下的运动分析[J].电子学报,2000,28(10):114-117. 被引量:18
  • 5Lee D S. Effective gaussian mixture learning for video background subtraction [J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2005,27 (5) : 827-832. 被引量:1
  • 6Jodoin P M, Max M, Janusz K. Statistical back- ground subtraction using spatial cues [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(12) : 1758-1763. 被引量:1
  • 7Jae Kyu S. Mixture of gaussians-hased background subtraction for Bayer-pattern image sequences [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011,21 (3) : 365-370. 被引量:1
  • 8Ridder C, Munkelt O, Kirchner H. W4 : Adaptive background estimation and foreground detection us- ing Kalman-filtering [C]//International Conference on Recent Advances in Mechatronics. Turkey:Elsevi- er, 1995 : 193-199. 被引量:1
  • 9Haritaoglu I, Harwood D, Davis L S. Real time surveillance of people and their activities[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2000,22 (8) : 809-830. 被引量:1
  • 10Toyama K, Krumm J, Brumitt B, et al. Wallflow- er: Principles and practice of background mainte- nance[C]//Int'l Conf on Computer Vision. Greece:IEEE, 1999: 255-261. 被引量:1

二级参考文献6

共引文献34

同被引文献26

  • 1Wren C R, Azarbayejani A, Darrell T, et al. Real- time tracking of the human body[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1997,19 (10) : 780-785. 被引量:1
  • 2Negahdaripour S. Revised definition of optical flow: integration of radiometric and geometric cues for dy- namic scene analysis[J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 1998,20 (9) : 961-979. 被引量:1
  • 3Lowe D G. Distinctive image features from scale-in- variant keypoints[J]. International Journal of Com- puter Vision, 2004,60(2) : 91-110. 被引量:1
  • 4Herbert B, Andreas E, Tinne T, et al. SURF: spee- ded up robust features[J]. Computer Vision and Im- age Understanding, 2008,110(3) : 346-359. 被引量:1
  • 5Attneave F. Some informational aspects of visual perception[J]. Psyehol Rev, 1955,61 : 183-193. 被引量:1
  • 6Ballard D H. Generalizing the Hough transform to detect arbitrary shapes[J]. IEEE Transactions on Pattern Recognition, 1981,13(2) : 111-122. 被引量:1
  • 7Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989,77 (2) : 257-286. 被引量:1
  • 8Bradski G, Kaehler A. Learning openCV: computer vision with the openCV library[M]. Sebastopol.. O' Reilly Media Inc, 2009:4. 被引量:1
  • 9Gaspare G, Mauro L, Alessio C, et al. Airport surveillance processing chain for high resolution radar [J]. IEEE Transac tionson Aerospaeeand Electronic Systems, 2010, 46(3): 1522-1533. 被引量:1
  • 10赵玲玲.场面监视雷达数据处理及软件实现[D].成都:电子科技大学,2008. 被引量:2

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部