期刊文献+

基于显著区域的月球影像内容特征研究 被引量:3

Research of Content Feature Descriptors for Lunar Images Based on Saliency Regions
下载PDF
导出
摘要 提出一种基于月球影像显著区域的内容特征(LIFBS),同时面向多核处理器架构,提出并行优化的LIF-BS特征生成算法.该算法考虑显著子区域之间的方位、尺度、强度和距离关系,为每一个显著区域生成一个LIFBS局部特征,以此描述月球影像的内容.理论分析与实验结果表明,LIFBS特征具有良好的不变性与相似性表达,同时特征生成算法具有较高的并行效率. A feature descriptor called LIBFS is proposed for lunar remote sensing images based on the saliency regions and a parallel LIBFS generating algorithm is proposed facing the multi-cores processor architecture. The algorithm considers the location, scale, slxength and distance relationship among different saliency regions in a lunar image. Several local LIBFS features are generated to describe the content of the image together. Theoretical analysis and experiments show that the LIBFS works well in invariance and similarity presentation,and the feature generating algorithm is of high parallel efficiency.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第5期911-919,共9页 Acta Electronica Sinica
基金 国家863高技术研究发展计划(No.2008AA12A211 No.2011AA120300) 国家自然科学基金(No.60902036 No.61070035)
关键词 月球遥感影像 基于内容的图像检索 图像特征 lunar remote sensing image content-based image retrieval (CBIR) image feature
  • 相关文献

参考文献18

  • 1黄祥林,沈兰荪.基于内容的图像检索技术研究[J].电子学报,2002,30(7):1065-1071. 被引量:101
  • 2Bay S H, Tuytelaars T, Gool L V. Surf: Speeded Up Robust Features[ A]. Proceedings of European Conference on Comput- er Vision[C]. Graz, Austria: Springer Press,2006.404 - 417. 被引量:1
  • 3陈慧中,陈永光,景宁,陈荦.基于SURF的月球影像ROI检测[J].红外与毫米波学报,2011,30(6):561-565. 被引量:2
  • 4Tian Q, Wu Y,Huang S. Combine User Defined Region-Of-In- terest and Spatial Layout for Image Retrieval[ A]. Proceedingsof International Conference on Imaging Processing [ C ]. Van- couver, Canada: IEEEXplore Press,2000.746 - 749. 被引量:1
  • 5Carson C, Belongie S, Greenspan H, Malik J. Blobworld: Image Segmentation Using Expectation-maximization and Its Applica- tion to Image Querying[ J]. 1EEE.R Transaction on Pattern Ana- lyze and Machine Intelligent,2002,24(8) : 1026 - 1038. 被引量:1
  • 6Sivic J, Zisserman A. Video Google: A Text Retrieval Approach to Object Matching in Videos[ A] .Proceedings of International Conference on Computer Vision[ C]. Nice, France:IEEExplore Press,2003, (2) : 1470 - 1477. 被引量:1
  • 7Hurtut T, Gousseau Y, Schmitt F. Adaptive Image Retrieval Based on The Spatial Organization of Colors[ J]. Computer Vi- sion and Image Understanding, 2005,112 (2) : 101 - 113. 被引量:1
  • 8Lazebnik S, Schmid C, Ponce J. Beyond Bags of Features:Spa- tial Pyramid Matching for Recognizing Natural Scene Cate- gories[ A ]. Proceedings of IF, IEEE Conference on Computer Vi- sion and Pattern Recognition[ C]. New York, USA: 1E, EExplore Press,2006.2167 - 2178. 被引量:1
  • 9Liu Y, Zhang D-S, Liu G-J. Region-based Image Retrieval with High-level Semantics Using Decision Tree Leanling[ J]. Pattern Recojhlaition, 2008,41 (8) : 2554 - 2570. 被引量:1
  • 10韩东峰,李文辉,郭武.基于潜在局部区域空间关系学习的物体分类算法[J].计算机学报,2007,30(8):1286-1294. 被引量:5

二级参考文献101

共引文献148

同被引文献43

  • 1Zheng L, Wang S, Zhou W, Tian Q. Bayes merging of multiple vocabularies for scalable image retaieval[A]. Proceedings of the 2014 IEEE International Conference on Computer Vision and Pattern Recognition [C]. Columbus, OH, USA: IEEE, 2014. 4321 - 4328. 被引量:1
  • 2Sivic J, Zisserman A. Video Google:A text retrieval approach to object matching in videos[A]. Proceedings of the 2003 9th IEEE Intemational Conference on Computer Vision[C]. Nice, France: IEEE,2003.1470 - 1477. 被引量:1
  • 3Lowe D G. Distinctive image features from scale-invariant key- points[J]. International Journal of Computer Vision, 2004, 60 (2) :91 - 110. 被引量:1
  • 4Lazebnik S, Schmid C,Ponce J. Beyond bags of features: Spa- tial pyramid matching for recognizing natural scene categories[A]. Proceedings of the 2006 mEE Computer Society Confer- ence on Computer Vision and Pattern Recognition Workshops [C] .New York, NY, USA: IF.F.E, 2006.2169 - 2178. 被引量:1
  • 5Wu Z, Ke Q, Isard M, Sun J. Bundling features for large scale partial-duplicate web image search [A]. Proceedings of the 2009 mEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops [C]. Miami, FL, USA: IEEE,2009.25- 32. 被引量:1
  • 6Hu S. Region-based partial-duplicate image retrieval[A]. Pro- ceedings of the 2012 International Conference on Industrial Control and Electronics Engineering[C]. Xi' an, China: IEEE, 2012. 1521 - 1524. 被引量:1
  • 7Perd' och M, Chum O, Matas J. Efficient representation of local geometry for large scale object retrieval[A] .Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops [C]. Miami, FL, USA: IEEE,2009.9 - 16. 被引量:1
  • 8Zhou W,Li H, Lu Y, Tian Q. Large scale image search with geometric coding[A]. Proceedings of the 2011 ACM Multi- media Conference and Co-Located Workshops [C]. Scotts- dale,AZ,USA:ACM,2011.1349 - 1352. 被引量:1
  • 9Xie H, G-ao K, Zlaang Y, Li J. Local geometric consistency constraint for image retrieval[A]. Proceedings of the 2011 18th IEEE International Conference on Image Processing[C]. Brussels, Belgium: IEEE, 2011. 101 - 104. 被引量:1
  • 10Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981,24(6) :381 - 395. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部