期刊文献+

具有潜伏细胞和CTL免疫反应的HIV模型的稳定性分析 被引量:10

Stability Analysis of an HIV Model with Latent Infected CD4^+T Cells and CTL Immune Response
下载PDF
导出
摘要 研究了具有潜伏细胞和CTL免疫反应的HIV动力学模型.利用Lyapunov函数法分析了系统的全局稳定性. In this paper, an HIV model with latent infected CD4+T ceils and CTL immune response is studied. The global asymptotical stabilities are obtained by means of Lyapunov function.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期23-27,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10971168) 重庆市自然科学基金资助项目(CSTC2008BB0009)
关键词 全局稳定性 潜伏细胞 CTL免疫反应 LYAPUNOV函数 global stability latent infected cells CTL immune response Lyapunov function
  • 相关文献

参考文献12

  • 1PERELSON A S, KIRSCHNER D E, DEBOER R. Dynamics of HIV Infection of CD4+T Cells [J]. Math Biosci, 1993, 114(1): 81-125. 被引量:1
  • 2PERELSON A S, NELSON P W. Mathematical Analysis of HIV-I Dynamics in Vivo [J]. SIAM, 1999, 41(1) : 3-44. 被引量:1
  • 3INOUE T, KAJIWARA T, SASAKIA T. Global Stability of Models of Humoral Immunity Against Multiple Viral Strains [J]. Journal of Biological Dynamics, 2010, 4(3): 282-295. 被引量:1
  • 4MURASE A, SASAKIA T, KAJIWARA T. Stability Analysis of Pathogen-Immune Interaction Dynamics [J]. J Math Biol, 2005, 51(3): 247-267. 被引量:1
  • 5KAJIWARA T, SASAKIA T. A Note on the Stability Analysis of Pathogen-Immune Interaction Dynamics [J]. Discrete Cont Dyn B, 2004, 4(3): 615-622. 被引量:1
  • 6NOWAK M A, BANGHAM C R M. Population Dynamics of Immune Responses to Persistent Viruses [J]. Science, 1996, 272(5258): 74-79. 被引量:1
  • 7CULSHAW R V, RUAN S G, SPITERI R J. Optimal HIV Treatment by Maximising Immune Response [J]. J MathBiol, 2004, 48(5): 545-562. 被引量:1
  • 8PANGHal-yan WANGWen-di WANGKai-fa.Global Properties of Virus Dynamics with CTL Response.西南师范大学学报:自然科学版,2005,. 被引量:1
  • 9KRAKAUER D C, NOWAK M A. T-Cell Induced Pathogenesis in HIV: Bystander Effects and Latent Infection [J]. Proc Biol Sci, 1999, 266(1423): 1069-1075. 被引量:1
  • 10KIRSCHNER D E. Using Mathematics to Understand HIV Immune Dynamics [J]. Notices of the AMS, 1996, 43(2) 191-202. 被引量:1

同被引文献53

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2李超,伏圣博,刘华玲,马欣荣.细胞凋亡研究进展[J].世界科技研究与发展,2007,29(3):45-53. 被引量:76
  • 3Perelson A, Nelson P W. Mathematical analysis of HIV-1 dynamics in vivo [ J ]. Society for Industrial and Applied Mathematics, 1999,41 ( 1 ) :3-44. 被引量:1
  • 4Wang K, Wang W, Liu X. Viral infection model with peri- odic lytic immune response [ J ]. Chaos, Solitons & Frac- tals,2006,28 ( 1 ) :90-99. 被引量:1
  • 5Zhu Huiyan,Luo Yang, Chen Meiling. Stability and Hopf bifurcation of HIV infection model with CTL-response delay [ J ]. Computers and Mathematics with Applica- tions, 2011,62 (9) : 3091-3102. 被引量:1
  • 6Smith R J,Wahl L M. Drug resistance in an immunologi- cal model of HIV-1 infection with impulsive drug effects [ J ]. Bulletin of Mathematical Biology, 2005,67 ( 4 ) : 783-813. 被引量:1
  • 7Smith R J, Schwartz E J. Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine : How often should you vaccinate and how strong should the vaccine be? [ J]. Mathematical biosciences,2008,212(2) : 180-187. 被引量:1
  • 8Smith R J, Aggarwala B D. Can the viral reservoir of la- tently infected CD4+ T cells be eradicated with antiret- roviral HIV drugs? [ J ]. Journal of mathematical biolo- gy,2009,59(5) :697-715. 被引量:1
  • 9Rong L, Gilchrist M A, Feng Z, et al. Modeling within- host HIV-1 dynamics and the evolution of drug resist- ance: trade-offs between viral enzyme function and drug susceptibility[ J ]. Journal of Theoretical biology, 2007, 247(4) :804-818. 被引量:1
  • 10Buonomo B, Vargas-De-Leon C. Global stability for an HIV-1 infection model including an eclipse stage of in- fected cells [J]. Journal of Mathematical Analysis and Applications ,2012,385 (2) :709-720. 被引量:1

引证文献10

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部